Matches in SemOpenAlex for { <https://semopenalex.org/work/W3089023066> ?p ?o ?g. }
- W3089023066 abstract "Knee osteoarthritis (KOA) is characterized by pain and decreased gait function. We aimed to find KOA-related gait features based on patient reported outcome measures (PROMs) and develop regression models using machine learning algorithms to estimate KOA severity. The study included 375 volunteers with variable KOA grades. The severity of KOA was determined using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). WOMAC scores were used to classify disease severity into three groups. A total of 1087 features were extracted from the gait data. An ANOVA and student's t-test were performed and only features that were significant were selected for inclusion in the machine learning algorithm. Three WOMAC subscales (physical function, pain and stiffness) were further divided into three classes. An ANOVA was performed to determine which selected features were significantly related to the subscales. Both linear regression models and a random forest regression was used to estimate patient the WOMAC scores. Forty-three features were selected based on ANOVA and student's t-test results. The following number of features were selected from each joint: 12 from hip, 1 feature from pelvic, 17 features from knee, 9 features from ankle, 1 feature from foot, and 3 features from spatiotemporal parameters. A significance level of < 0.0001 and < 0.00003 was set for the ANOVA and t-test, respectively. The physical function, pain, and stiffness subscales were related to 41, 10, and 16 features, respectively. Linear regression models showed a correlation of 0.723 and the machine learning algorithm showed a correlation of 0.741. The severity of KOA was predicted by gait analysis features, which were incorporated to develop an objective estimation model for KOA severity. The identified features may serve as a tool to guide rehabilitation and progress assessments. In addition, the estimation model presented here suggests an approach for clinical application of gait analysis data for KOA evaluation." @default.
- W3089023066 created "2020-10-01" @default.
- W3089023066 creator A5014527107 @default.
- W3089023066 creator A5025835310 @default.
- W3089023066 creator A5037025224 @default.
- W3089023066 creator A5043869768 @default.
- W3089023066 creator A5089090600 @default.
- W3089023066 creator A5090898944 @default.
- W3089023066 date "2020-09-25" @default.
- W3089023066 modified "2023-09-25" @default.
- W3089023066 title "A machine learning-based diagnostic model associated with knee osteoarthritis severity" @default.
- W3089023066 cites W1821469868 @default.
- W3089023066 cites W1869362176 @default.
- W3089023066 cites W1987583495 @default.
- W3089023066 cites W1990626567 @default.
- W3089023066 cites W1991351924 @default.
- W3089023066 cites W1995915070 @default.
- W3089023066 cites W2005817228 @default.
- W3089023066 cites W2023635102 @default.
- W3089023066 cites W2024480775 @default.
- W3089023066 cites W2025969050 @default.
- W3089023066 cites W2051239218 @default.
- W3089023066 cites W2063121773 @default.
- W3089023066 cites W2065178274 @default.
- W3089023066 cites W2070128197 @default.
- W3089023066 cites W2070710960 @default.
- W3089023066 cites W2074881650 @default.
- W3089023066 cites W2076404159 @default.
- W3089023066 cites W2083231156 @default.
- W3089023066 cites W2087285044 @default.
- W3089023066 cites W2089150902 @default.
- W3089023066 cites W2097950056 @default.
- W3089023066 cites W2098082628 @default.
- W3089023066 cites W2102079401 @default.
- W3089023066 cites W2109214314 @default.
- W3089023066 cites W2114170315 @default.
- W3089023066 cites W2119754317 @default.
- W3089023066 cites W2128882188 @default.
- W3089023066 cites W2141750881 @default.
- W3089023066 cites W2154836863 @default.
- W3089023066 cites W2167874889 @default.
- W3089023066 cites W2274722622 @default.
- W3089023066 cites W2313392552 @default.
- W3089023066 cites W2438600268 @default.
- W3089023066 cites W2543758500 @default.
- W3089023066 cites W2911964244 @default.
- W3089023066 cites W2914029965 @default.
- W3089023066 cites W2915001551 @default.
- W3089023066 cites W2923473556 @default.
- W3089023066 cites W2965209087 @default.
- W3089023066 cites W34596792 @default.
- W3089023066 cites W4231899502 @default.
- W3089023066 cites W4244022613 @default.
- W3089023066 doi "https://doi.org/10.1038/s41598-020-72941-4" @default.
- W3089023066 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7519044" @default.
- W3089023066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32978506" @default.
- W3089023066 hasPublicationYear "2020" @default.
- W3089023066 type Work @default.
- W3089023066 sameAs 3089023066 @default.
- W3089023066 citedByCount "22" @default.
- W3089023066 countsByYear W30890230662021 @default.
- W3089023066 countsByYear W30890230662022 @default.
- W3089023066 countsByYear W30890230662023 @default.
- W3089023066 crossrefType "journal-article" @default.
- W3089023066 hasAuthorship W3089023066A5014527107 @default.
- W3089023066 hasAuthorship W3089023066A5025835310 @default.
- W3089023066 hasAuthorship W3089023066A5037025224 @default.
- W3089023066 hasAuthorship W3089023066A5043869768 @default.
- W3089023066 hasAuthorship W3089023066A5089090600 @default.
- W3089023066 hasAuthorship W3089023066A5090898944 @default.
- W3089023066 hasBestOaLocation W30890230661 @default.
- W3089023066 hasConcept C117220453 @default.
- W3089023066 hasConcept C119857082 @default.
- W3089023066 hasConcept C126322002 @default.
- W3089023066 hasConcept C142724271 @default.
- W3089023066 hasConcept C151800584 @default.
- W3089023066 hasConcept C152877465 @default.
- W3089023066 hasConcept C154945302 @default.
- W3089023066 hasConcept C170964787 @default.
- W3089023066 hasConcept C173906292 @default.
- W3089023066 hasConcept C1862650 @default.
- W3089023066 hasConcept C204787440 @default.
- W3089023066 hasConcept C2524010 @default.
- W3089023066 hasConcept C2776164576 @default.
- W3089023066 hasConcept C2779286237 @default.
- W3089023066 hasConcept C33923547 @default.
- W3089023066 hasConcept C41008148 @default.
- W3089023066 hasConcept C48921125 @default.
- W3089023066 hasConcept C71924100 @default.
- W3089023066 hasConcept C99476002 @default.
- W3089023066 hasConcept C99508421 @default.
- W3089023066 hasConceptScore W3089023066C117220453 @default.
- W3089023066 hasConceptScore W3089023066C119857082 @default.
- W3089023066 hasConceptScore W3089023066C126322002 @default.
- W3089023066 hasConceptScore W3089023066C142724271 @default.
- W3089023066 hasConceptScore W3089023066C151800584 @default.
- W3089023066 hasConceptScore W3089023066C152877465 @default.
- W3089023066 hasConceptScore W3089023066C154945302 @default.
- W3089023066 hasConceptScore W3089023066C170964787 @default.
- W3089023066 hasConceptScore W3089023066C173906292 @default.