Matches in SemOpenAlex for { <https://semopenalex.org/work/W3090948650> ?p ?o ?g. }
- W3090948650 abstract "Automated inspection plays an important role in monitoring large-scale photovoltaic power plants. Commonly, electroluminescense measurements are used to identify various types of defects on solar modules but have not been used to determine the power of a module. However, knowledge of the power at maximum power point is important as well, since drops in the power of a single module can affect the performance of an entire string. By now, this is commonly determined by measurements that require to discontact or even dismount the module, rendering a regular inspection of individual modules infeasible. In this work, we bridge the gap between electroluminescense measurements and the power determination of a module. We compile a large dataset of 719 electroluminescense measurementsof modules at various stages of degradation, especially cell cracks and fractures, and the corresponding power at maximum power point. Here,we focus on inactive regions and cracks as the predominant type of defect. We set up a baseline regression model to predict the power from electroluminescense measurements with a mean absolute error of 9.0+/-3.7$W_P$ (4.0+/-8.4%). Then, we show that deep-learning can be used to train a model that performs significantly better (7.3+/-2.7$W_P$ or 3.2+/-6.5%) and propose a variant of class activation maps to obtain the per cell power loss, as predicted by the model. With this work, we aim to open a new research topic. Therefore, we publicly release the dataset, the code and trained models to empower other researchers to compare against our results. Finally, we present a thorough evaluation of certain boundary conditions like the dataset size and an automated preprocessing pipeline for on-site measurements showing multiple modules at once." @default.
- W3090948650 created "2020-10-08" @default.
- W3090948650 creator A5001954651 @default.
- W3090948650 creator A5002468615 @default.
- W3090948650 creator A5015204784 @default.
- W3090948650 creator A5022721974 @default.
- W3090948650 creator A5025613922 @default.
- W3090948650 creator A5030367033 @default.
- W3090948650 creator A5030396647 @default.
- W3090948650 creator A5032499810 @default.
- W3090948650 creator A5046060326 @default.
- W3090948650 creator A5048341161 @default.
- W3090948650 creator A5087093169 @default.
- W3090948650 date "2020-09-30" @default.
- W3090948650 modified "2023-09-27" @default.
- W3090948650 title "Deep Learning-based Pipeline for Module Power Prediction from EL Measurements." @default.
- W3090948650 cites W1987446684 @default.
- W3090948650 cites W1994488211 @default.
- W3090948650 cites W2018162174 @default.
- W3090948650 cites W2062118960 @default.
- W3090948650 cites W2076844371 @default.
- W3090948650 cites W2089758147 @default.
- W3090948650 cites W2101234009 @default.
- W3090948650 cites W2108598243 @default.
- W3090948650 cites W2133059825 @default.
- W3090948650 cites W2137226992 @default.
- W3090948650 cites W2157444450 @default.
- W3090948650 cites W2161381512 @default.
- W3090948650 cites W2255553150 @default.
- W3090948650 cites W2281612880 @default.
- W3090948650 cites W2302255633 @default.
- W3090948650 cites W2557637350 @default.
- W3090948650 cites W2774284269 @default.
- W3090948650 cites W2781330401 @default.
- W3090948650 cites W2802303470 @default.
- W3090948650 cites W2825063406 @default.
- W3090948650 cites W2902420665 @default.
- W3090948650 cites W2903023780 @default.
- W3090948650 cites W2903117574 @default.
- W3090948650 cites W2914238709 @default.
- W3090948650 cites W2949667497 @default.
- W3090948650 cites W2949676527 @default.
- W3090948650 cites W2963163009 @default.
- W3090948650 cites W2965768831 @default.
- W3090948650 cites W2970822152 @default.
- W3090948650 cites W2970971581 @default.
- W3090948650 cites W2982018482 @default.
- W3090948650 cites W3014582166 @default.
- W3090948650 hasPublicationYear "2020" @default.
- W3090948650 type Work @default.
- W3090948650 sameAs 3090948650 @default.
- W3090948650 citedByCount "2" @default.
- W3090948650 countsByYear W30909486502021 @default.
- W3090948650 crossrefType "posted-content" @default.
- W3090948650 hasAuthorship W3090948650A5001954651 @default.
- W3090948650 hasAuthorship W3090948650A5002468615 @default.
- W3090948650 hasAuthorship W3090948650A5015204784 @default.
- W3090948650 hasAuthorship W3090948650A5022721974 @default.
- W3090948650 hasAuthorship W3090948650A5025613922 @default.
- W3090948650 hasAuthorship W3090948650A5030367033 @default.
- W3090948650 hasAuthorship W3090948650A5030396647 @default.
- W3090948650 hasAuthorship W3090948650A5032499810 @default.
- W3090948650 hasAuthorship W3090948650A5046060326 @default.
- W3090948650 hasAuthorship W3090948650A5048341161 @default.
- W3090948650 hasAuthorship W3090948650A5087093169 @default.
- W3090948650 hasConcept C108583219 @default.
- W3090948650 hasConcept C121332964 @default.
- W3090948650 hasConcept C127413603 @default.
- W3090948650 hasConcept C154945302 @default.
- W3090948650 hasConcept C163258240 @default.
- W3090948650 hasConcept C199360897 @default.
- W3090948650 hasConcept C200601418 @default.
- W3090948650 hasConcept C205711294 @default.
- W3090948650 hasConcept C41008148 @default.
- W3090948650 hasConcept C43521106 @default.
- W3090948650 hasConcept C62520636 @default.
- W3090948650 hasConceptScore W3090948650C108583219 @default.
- W3090948650 hasConceptScore W3090948650C121332964 @default.
- W3090948650 hasConceptScore W3090948650C127413603 @default.
- W3090948650 hasConceptScore W3090948650C154945302 @default.
- W3090948650 hasConceptScore W3090948650C163258240 @default.
- W3090948650 hasConceptScore W3090948650C199360897 @default.
- W3090948650 hasConceptScore W3090948650C200601418 @default.
- W3090948650 hasConceptScore W3090948650C205711294 @default.
- W3090948650 hasConceptScore W3090948650C41008148 @default.
- W3090948650 hasConceptScore W3090948650C43521106 @default.
- W3090948650 hasConceptScore W3090948650C62520636 @default.
- W3090948650 hasLocation W30909486501 @default.
- W3090948650 hasOpenAccess W3090948650 @default.
- W3090948650 hasPrimaryLocation W30909486501 @default.
- W3090948650 hasRelatedWork W1976005446 @default.
- W3090948650 hasRelatedWork W2080604462 @default.
- W3090948650 hasRelatedWork W2292462946 @default.
- W3090948650 hasRelatedWork W2802490538 @default.
- W3090948650 hasRelatedWork W2982589917 @default.
- W3090948650 hasRelatedWork W2999847344 @default.
- W3090948650 hasRelatedWork W3001307782 @default.
- W3090948650 hasRelatedWork W3009917598 @default.
- W3090948650 hasRelatedWork W3015382364 @default.
- W3090948650 hasRelatedWork W3036255020 @default.