Matches in SemOpenAlex for { <https://semopenalex.org/work/W3102979608> ?p ?o ?g. }
- W3102979608 endingPage "203" @default.
- W3102979608 startingPage "159" @default.
- W3102979608 abstract "Given a category <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper C> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>C</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a combinatorial nature, we study the following fundamental question: how do combinatorial properties of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper C> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>C</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> affect algebraic properties of representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper C> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>C</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>? We prove two general results. The first gives a criterion for representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper C> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>C</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to admit a theory of Gröbner bases, from which we obtain a criterion for noetherianity. The second gives a criterion for a general “rationality” result for Hilbert series of representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper C> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>C</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and connects to the theory of formal languages. Our work is motivated by recent work in the literature on representations of various specific categories. Our general criteria recover many of the results on these categories that had been proved by ad hoc means, and often yield cleaner proofs and stronger statements. For example, we give a new, more robust, proof that FI-modules (studied by Church, Ellenberg, and Farb), and certain generalizations, are noetherian; we prove the Lannes–Schwartz artinian conjecture from the study of generic representation theory of finite fields; we significantly improve the theory of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Delta> <mml:semantics> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:annotation encoding=application/x-tex>Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we establish fundamental properties of twisted commutative algebras in positive characteristic." @default.
- W3102979608 created "2020-11-23" @default.
- W3102979608 creator A5009159816 @default.
- W3102979608 creator A5066686947 @default.
- W3102979608 date "2016-03-17" @default.
- W3102979608 modified "2023-10-18" @default.
- W3102979608 title "Gröbner methods for representations of combinatorial categories" @default.
- W3102979608 cites W1488630354 @default.
- W3102979608 cites W1499669636 @default.
- W3102979608 cites W1551177513 @default.
- W3102979608 cites W1562231666 @default.
- W3102979608 cites W1969561881 @default.
- W3102979608 cites W1973722201 @default.
- W3102979608 cites W1977198477 @default.
- W3102979608 cites W1988239817 @default.
- W3102979608 cites W2000030294 @default.
- W3102979608 cites W2011792334 @default.
- W3102979608 cites W2012142864 @default.
- W3102979608 cites W2023372371 @default.
- W3102979608 cites W2028698043 @default.
- W3102979608 cites W2029730644 @default.
- W3102979608 cites W2037343549 @default.
- W3102979608 cites W2046859120 @default.
- W3102979608 cites W2050003317 @default.
- W3102979608 cites W2055327569 @default.
- W3102979608 cites W2058627441 @default.
- W3102979608 cites W2062302824 @default.
- W3102979608 cites W2063765066 @default.
- W3102979608 cites W2075675578 @default.
- W3102979608 cites W2076508310 @default.
- W3102979608 cites W2094779019 @default.
- W3102979608 cites W2096499612 @default.
- W3102979608 cites W2109164517 @default.
- W3102979608 cites W2120930689 @default.
- W3102979608 cites W2122446140 @default.
- W3102979608 cites W2163841074 @default.
- W3102979608 cites W2252357300 @default.
- W3102979608 cites W2317753836 @default.
- W3102979608 cites W2320651486 @default.
- W3102979608 cites W2324735391 @default.
- W3102979608 cites W2328648455 @default.
- W3102979608 cites W2477858045 @default.
- W3102979608 cites W2913266922 @default.
- W3102979608 cites W2963495298 @default.
- W3102979608 cites W2963550484 @default.
- W3102979608 cites W2963831516 @default.
- W3102979608 cites W3098472074 @default.
- W3102979608 cites W3100315854 @default.
- W3102979608 cites W3101713268 @default.
- W3102979608 cites W3121508537 @default.
- W3102979608 cites W326622104 @default.
- W3102979608 cites W416992414 @default.
- W3102979608 cites W4238711752 @default.
- W3102979608 cites W4249549360 @default.
- W3102979608 doi "https://doi.org/10.1090/jams/859" @default.
- W3102979608 hasPublicationYear "2016" @default.
- W3102979608 type Work @default.
- W3102979608 sameAs 3102979608 @default.
- W3102979608 citedByCount "133" @default.
- W3102979608 countsByYear W31029796082014 @default.
- W3102979608 countsByYear W31029796082015 @default.
- W3102979608 countsByYear W31029796082016 @default.
- W3102979608 countsByYear W31029796082017 @default.
- W3102979608 countsByYear W31029796082018 @default.
- W3102979608 countsByYear W31029796082019 @default.
- W3102979608 countsByYear W31029796082020 @default.
- W3102979608 countsByYear W31029796082021 @default.
- W3102979608 countsByYear W31029796082022 @default.
- W3102979608 countsByYear W31029796082023 @default.
- W3102979608 crossrefType "journal-article" @default.
- W3102979608 hasAuthorship W3102979608A5009159816 @default.
- W3102979608 hasAuthorship W3102979608A5066686947 @default.
- W3102979608 hasBestOaLocation W31029796081 @default.
- W3102979608 hasConcept C11413529 @default.
- W3102979608 hasConcept C154945302 @default.
- W3102979608 hasConcept C184337299 @default.
- W3102979608 hasConcept C18903297 @default.
- W3102979608 hasConcept C199360897 @default.
- W3102979608 hasConcept C2776321320 @default.
- W3102979608 hasConcept C2777212361 @default.
- W3102979608 hasConcept C2777299769 @default.
- W3102979608 hasConcept C33923547 @default.
- W3102979608 hasConcept C41008148 @default.
- W3102979608 hasConcept C86803240 @default.
- W3102979608 hasConceptScore W3102979608C11413529 @default.
- W3102979608 hasConceptScore W3102979608C154945302 @default.
- W3102979608 hasConceptScore W3102979608C184337299 @default.
- W3102979608 hasConceptScore W3102979608C18903297 @default.
- W3102979608 hasConceptScore W3102979608C199360897 @default.
- W3102979608 hasConceptScore W3102979608C2776321320 @default.
- W3102979608 hasConceptScore W3102979608C2777212361 @default.
- W3102979608 hasConceptScore W3102979608C2777299769 @default.
- W3102979608 hasConceptScore W3102979608C33923547 @default.
- W3102979608 hasConceptScore W3102979608C41008148 @default.
- W3102979608 hasConceptScore W3102979608C86803240 @default.
- W3102979608 hasIssue "1" @default.
- W3102979608 hasLocation W31029796081 @default.
- W3102979608 hasLocation W31029796082 @default.