Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108705003> ?p ?o ?g. }
- W3108705003 endingPage "3797" @default.
- W3108705003 startingPage "3797" @default.
- W3108705003 abstract "Measuring and monitoring the height of vegetation provides important insights into forest age and habitat quality. These are essential for the accuracy of applications that are highly reliant on up-to-date and accurate vegetation data. Current vegetation sensing practices involve ground survey, photogrammetry, synthetic aperture radar (SAR), and airborne light detection and ranging sensors (LiDAR). While these methods provide high resolution and accuracy, their hardware and collection effort prohibits highly recurrent and widespread collection. In response to the limitations of current methods, we designed Y-NET, a novel deep learning model to generate high resolution models of vegetation from highly recurrent multispectral aerial imagery and elevation data. Y-NET’s architecture uses convolutional layers to learn correlations between different input features and vegetation height, generating an accurate vegetation surface model (VSM) at 1×1 m resolution. We evaluated Y-NET on 235 km2 of the East San Francisco Bay Area and find that Y-NET achieves low error from LiDAR when tested on new locations. Y-NET also achieves an R2 of 0.83 and can effectively model complex vegetation through side-by-side visual comparisons. Furthermore, we show that Y-NET is able to identify instances of vegetation growth and mitigation by comparing aerial imagery and LiDAR collected at different times." @default.
- W3108705003 created "2020-12-07" @default.
- W3108705003 creator A5032929639 @default.
- W3108705003 creator A5042605516 @default.
- W3108705003 creator A5058441903 @default.
- W3108705003 date "2020-11-19" @default.
- W3108705003 modified "2023-09-26" @default.
- W3108705003 title "Beyond Measurement: Extracting Vegetation Height from High Resolution Imagery with Deep Learning" @default.
- W3108705003 cites W1498436455 @default.
- W3108705003 cites W1525093341 @default.
- W3108705003 cites W1594879216 @default.
- W3108705003 cites W1967395374 @default.
- W3108705003 cites W1980375943 @default.
- W3108705003 cites W1996938046 @default.
- W3108705003 cites W2000872026 @default.
- W3108705003 cites W2001580523 @default.
- W3108705003 cites W2004349581 @default.
- W3108705003 cites W2017257315 @default.
- W3108705003 cites W2021651338 @default.
- W3108705003 cites W2037800381 @default.
- W3108705003 cites W2042374852 @default.
- W3108705003 cites W2043254789 @default.
- W3108705003 cites W2045804821 @default.
- W3108705003 cites W2051144184 @default.
- W3108705003 cites W2082660843 @default.
- W3108705003 cites W2098823605 @default.
- W3108705003 cites W2104252070 @default.
- W3108705003 cites W2109039041 @default.
- W3108705003 cites W2112796928 @default.
- W3108705003 cites W2122892105 @default.
- W3108705003 cites W2143308918 @default.
- W3108705003 cites W2156439103 @default.
- W3108705003 cites W2165977355 @default.
- W3108705003 cites W2171688314 @default.
- W3108705003 cites W2330605981 @default.
- W3108705003 cites W2496005047 @default.
- W3108705003 cites W2523454627 @default.
- W3108705003 cites W2565950292 @default.
- W3108705003 cites W2754487926 @default.
- W3108705003 cites W2791236639 @default.
- W3108705003 cites W2895884120 @default.
- W3108705003 cites W2898781735 @default.
- W3108705003 cites W2908248284 @default.
- W3108705003 cites W2919115771 @default.
- W3108705003 cites W2963881378 @default.
- W3108705003 cites W2965595054 @default.
- W3108705003 cites W3021411227 @default.
- W3108705003 doi "https://doi.org/10.3390/rs12223797" @default.
- W3108705003 hasPublicationYear "2020" @default.
- W3108705003 type Work @default.
- W3108705003 sameAs 3108705003 @default.
- W3108705003 citedByCount "0" @default.
- W3108705003 crossrefType "journal-article" @default.
- W3108705003 hasAuthorship W3108705003A5032929639 @default.
- W3108705003 hasAuthorship W3108705003A5042605516 @default.
- W3108705003 hasAuthorship W3108705003A5058441903 @default.
- W3108705003 hasBestOaLocation W31087050031 @default.
- W3108705003 hasConcept C117455697 @default.
- W3108705003 hasConcept C127313418 @default.
- W3108705003 hasConcept C142724271 @default.
- W3108705003 hasConcept C173163844 @default.
- W3108705003 hasConcept C176262533 @default.
- W3108705003 hasConcept C181843262 @default.
- W3108705003 hasConcept C2524010 @default.
- W3108705003 hasConcept C2776133958 @default.
- W3108705003 hasConcept C2778102629 @default.
- W3108705003 hasConcept C2987819851 @default.
- W3108705003 hasConcept C33923547 @default.
- W3108705003 hasConcept C37054046 @default.
- W3108705003 hasConcept C39432304 @default.
- W3108705003 hasConcept C51399673 @default.
- W3108705003 hasConcept C62649853 @default.
- W3108705003 hasConcept C71924100 @default.
- W3108705003 hasConceptScore W3108705003C117455697 @default.
- W3108705003 hasConceptScore W3108705003C127313418 @default.
- W3108705003 hasConceptScore W3108705003C142724271 @default.
- W3108705003 hasConceptScore W3108705003C173163844 @default.
- W3108705003 hasConceptScore W3108705003C176262533 @default.
- W3108705003 hasConceptScore W3108705003C181843262 @default.
- W3108705003 hasConceptScore W3108705003C2524010 @default.
- W3108705003 hasConceptScore W3108705003C2776133958 @default.
- W3108705003 hasConceptScore W3108705003C2778102629 @default.
- W3108705003 hasConceptScore W3108705003C2987819851 @default.
- W3108705003 hasConceptScore W3108705003C33923547 @default.
- W3108705003 hasConceptScore W3108705003C37054046 @default.
- W3108705003 hasConceptScore W3108705003C39432304 @default.
- W3108705003 hasConceptScore W3108705003C51399673 @default.
- W3108705003 hasConceptScore W3108705003C62649853 @default.
- W3108705003 hasConceptScore W3108705003C71924100 @default.
- W3108705003 hasIssue "22" @default.
- W3108705003 hasLocation W31087050031 @default.
- W3108705003 hasLocation W31087050032 @default.
- W3108705003 hasOpenAccess W3108705003 @default.
- W3108705003 hasPrimaryLocation W31087050031 @default.
- W3108705003 hasRelatedWork W2082328214 @default.
- W3108705003 hasRelatedWork W2184056567 @default.
- W3108705003 hasRelatedWork W2185285218 @default.
- W3108705003 hasRelatedWork W2575794203 @default.