Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111241683> ?p ?o ?g. }
- W3111241683 endingPage "17" @default.
- W3111241683 startingPage "3" @default.
- W3111241683 abstract "Road extraction is an important task in remote sensing image information extraction. Recently, deep learning semantic segmentation has become an important method of road extraction. Due to the impact of the loss of multiscale spatial features, the results of road extraction still contain incomplete or fractured results. In this article, we proposed a deep learning model, which is called the dense-global-residual network that reduces the loss of spatial information and enhances context awareness. In the dense-global-residual network, the residual network is used to extract the features at different levels. To obtain more abundant multiscale features, a dense and global spatial pyramid pooling module based on Atrous Spatial Pyramid Pooling is built to perceive and aggregate the contextual information. The proposed method obtains better results on the GF-2 road dataset and public Massachusetts road dataset of aerial imagery. In order to prove the effectiveness of our method, we compared with four methods, such as DeepLabV3+, U-net, D-LinkNet, and coord-dense-global model, and found that the accuracy of our method is considerably better. Moreover, the dense-global-residual network can also effectively extract roads, especially trees and building shadows that occlude the road. In addition, our method can successfully extract roads in regions of different development levels in universality experiments. This indicates that the proposed method can effectively maintain the completeness and continuity of roads and improve the accuracy of road segmentation from high-resolution remote sensing images." @default.
- W3111241683 created "2020-12-21" @default.
- W3111241683 creator A5005781729 @default.
- W3111241683 creator A5040998948 @default.
- W3111241683 creator A5065644909 @default.
- W3111241683 creator A5075523709 @default.
- W3111241683 creator A5088010841 @default.
- W3111241683 creator A5089446712 @default.
- W3111241683 date "2021-01-01" @default.
- W3111241683 modified "2023-10-16" @default.
- W3111241683 title "Automatic Road Extraction from High-Resolution Remote Sensing Images Using a Method Based on Densely Connected Spatial Feature-Enhanced Pyramid" @default.
- W3111241683 cites W1479775735 @default.
- W3111241683 cites W1903029394 @default.
- W3111241683 cites W1986300024 @default.
- W3111241683 cites W1987497606 @default.
- W3111241683 cites W2022902702 @default.
- W3111241683 cites W2031922215 @default.
- W3111241683 cites W2054279472 @default.
- W3111241683 cites W2070724998 @default.
- W3111241683 cites W2097375363 @default.
- W3111241683 cites W2116877738 @default.
- W3111241683 cites W2132267679 @default.
- W3111241683 cites W2136251662 @default.
- W3111241683 cites W2141143619 @default.
- W3111241683 cites W2144572173 @default.
- W3111241683 cites W2155226776 @default.
- W3111241683 cites W2164816590 @default.
- W3111241683 cites W2170672803 @default.
- W3111241683 cites W2194775991 @default.
- W3111241683 cites W2304676573 @default.
- W3111241683 cites W2412588858 @default.
- W3111241683 cites W2511065100 @default.
- W3111241683 cites W2535516436 @default.
- W3111241683 cites W2536208356 @default.
- W3111241683 cites W2547531169 @default.
- W3111241683 cites W2593886839 @default.
- W3111241683 cites W2684451029 @default.
- W3111241683 cites W2764012408 @default.
- W3111241683 cites W2765854028 @default.
- W3111241683 cites W2774258507 @default.
- W3111241683 cites W2774320778 @default.
- W3111241683 cites W2799166040 @default.
- W3111241683 cites W2799213142 @default.
- W3111241683 cites W2893801697 @default.
- W3111241683 cites W2940668261 @default.
- W3111241683 cites W2951841689 @default.
- W3111241683 cites W2963881378 @default.
- W3111241683 cites W2980878193 @default.
- W3111241683 cites W2983228571 @default.
- W3111241683 cites W2986885871 @default.
- W3111241683 cites W3004968762 @default.
- W3111241683 cites W3015281476 @default.
- W3111241683 cites W3037458146 @default.
- W3111241683 cites W3043645330 @default.
- W3111241683 cites W3048631361 @default.
- W3111241683 cites W3101640299 @default.
- W3111241683 cites W4238100585 @default.
- W3111241683 cites W639708223 @default.
- W3111241683 doi "https://doi.org/10.1109/jstars.2020.3042816" @default.
- W3111241683 hasPublicationYear "2021" @default.
- W3111241683 type Work @default.
- W3111241683 sameAs 3111241683 @default.
- W3111241683 citedByCount "26" @default.
- W3111241683 countsByYear W31112416832021 @default.
- W3111241683 countsByYear W31112416832022 @default.
- W3111241683 countsByYear W31112416832023 @default.
- W3111241683 crossrefType "journal-article" @default.
- W3111241683 hasAuthorship W3111241683A5005781729 @default.
- W3111241683 hasAuthorship W3111241683A5040998948 @default.
- W3111241683 hasAuthorship W3111241683A5065644909 @default.
- W3111241683 hasAuthorship W3111241683A5075523709 @default.
- W3111241683 hasAuthorship W3111241683A5088010841 @default.
- W3111241683 hasAuthorship W3111241683A5089446712 @default.
- W3111241683 hasBestOaLocation W31112416831 @default.
- W3111241683 hasConcept C108583219 @default.
- W3111241683 hasConcept C11413529 @default.
- W3111241683 hasConcept C142575187 @default.
- W3111241683 hasConcept C153180895 @default.
- W3111241683 hasConcept C154945302 @default.
- W3111241683 hasConcept C155512373 @default.
- W3111241683 hasConcept C159620131 @default.
- W3111241683 hasConcept C166957645 @default.
- W3111241683 hasConcept C205372480 @default.
- W3111241683 hasConcept C205649164 @default.
- W3111241683 hasConcept C2524010 @default.
- W3111241683 hasConcept C2779343474 @default.
- W3111241683 hasConcept C31972630 @default.
- W3111241683 hasConcept C33923547 @default.
- W3111241683 hasConcept C41008148 @default.
- W3111241683 hasConcept C52622490 @default.
- W3111241683 hasConcept C62649853 @default.
- W3111241683 hasConcept C70437156 @default.
- W3111241683 hasConcept C89600930 @default.
- W3111241683 hasConceptScore W3111241683C108583219 @default.
- W3111241683 hasConceptScore W3111241683C11413529 @default.
- W3111241683 hasConceptScore W3111241683C142575187 @default.
- W3111241683 hasConceptScore W3111241683C153180895 @default.
- W3111241683 hasConceptScore W3111241683C154945302 @default.