Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125425610> ?p ?o ?g. }
- W3125425610 endingPage "642" @default.
- W3125425610 startingPage "608" @default.
- W3125425610 abstract "This paper develops a tool for global prior sensitivity analysis in large Bayesian models. Without imposing parametric restrictions, the methodology provides bounds for posterior means or quantiles given any prior close to the original in relative entropy and reveals features of the prior that are important for the posterior statistics of interest. We develop a sequential Monte Carlo algorithm and use approximations to the likelihood and statistic of interest to implement the calculations. The methodology finds that the prior tightness hyperparameters in the hierarchical vector autoregression model from Giannone et al. (2015) are relatively insensitive to their hyperpriors. However, in the New Keynesian model of Smets and Wouters (2007), the error bands for the impulse response of output to a monetary policy shock depend heavily on the prior. The upper bound is especially sensitive, and the prior on wage rigidity plays a particularly important role." @default.
- W3125425610 created "2021-02-01" @default.
- W3125425610 creator A5088759339 @default.
- W3125425610 date "2023-08-01" @default.
- W3125425610 modified "2023-09-27" @default.
- W3125425610 title "Global robust Bayesian analysis in large models" @default.
- W3125425610 cites W1518940614 @default.
- W3125425610 cites W1525237857 @default.
- W3125425610 cites W1525755869 @default.
- W3125425610 cites W1577678297 @default.
- W3125425610 cites W1641947403 @default.
- W3125425610 cites W1774527694 @default.
- W3125425610 cites W1977011464 @default.
- W3125425610 cites W1983607152 @default.
- W3125425610 cites W1987476768 @default.
- W3125425610 cites W2004220372 @default.
- W3125425610 cites W2029202224 @default.
- W3125425610 cites W2040321156 @default.
- W3125425610 cites W2047733505 @default.
- W3125425610 cites W2056186894 @default.
- W3125425610 cites W2057016870 @default.
- W3125425610 cites W2066131681 @default.
- W3125425610 cites W2067316154 @default.
- W3125425610 cites W2072003315 @default.
- W3125425610 cites W2081741802 @default.
- W3125425610 cites W2084089095 @default.
- W3125425610 cites W2092223577 @default.
- W3125425610 cites W2094492456 @default.
- W3125425610 cites W2099036148 @default.
- W3125425610 cites W2105109338 @default.
- W3125425610 cites W2113151258 @default.
- W3125425610 cites W2118881814 @default.
- W3125425610 cites W2119515738 @default.
- W3125425610 cites W2123025259 @default.
- W3125425610 cites W2123748412 @default.
- W3125425610 cites W2135267747 @default.
- W3125425610 cites W2137289547 @default.
- W3125425610 cites W2137307912 @default.
- W3125425610 cites W2139606141 @default.
- W3125425610 cites W2141431463 @default.
- W3125425610 cites W2141894387 @default.
- W3125425610 cites W2142499192 @default.
- W3125425610 cites W2144427781 @default.
- W3125425610 cites W2166496721 @default.
- W3125425610 cites W2176197029 @default.
- W3125425610 cites W2228050892 @default.
- W3125425610 cites W2345224716 @default.
- W3125425610 cites W2614854554 @default.
- W3125425610 cites W2771048988 @default.
- W3125425610 cites W2794515326 @default.
- W3125425610 cites W2795089696 @default.
- W3125425610 cites W2947813134 @default.
- W3125425610 cites W2952769901 @default.
- W3125425610 cites W3101380508 @default.
- W3125425610 cites W3121290475 @default.
- W3125425610 cites W3121748989 @default.
- W3125425610 cites W3123265401 @default.
- W3125425610 cites W3123291496 @default.
- W3125425610 cites W3123970111 @default.
- W3125425610 cites W3124444187 @default.
- W3125425610 cites W3124934335 @default.
- W3125425610 cites W3125162238 @default.
- W3125425610 cites W3125996309 @default.
- W3125425610 cites W3186379539 @default.
- W3125425610 cites W4213087387 @default.
- W3125425610 cites W4285652002 @default.
- W3125425610 doi "https://doi.org/10.1016/j.jeconom.2022.06.004" @default.
- W3125425610 hasPublicationYear "2023" @default.
- W3125425610 type Work @default.
- W3125425610 sameAs 3125425610 @default.
- W3125425610 citedByCount "1" @default.
- W3125425610 countsByYear W31254256102022 @default.
- W3125425610 crossrefType "journal-article" @default.
- W3125425610 hasAuthorship W3125425610A5088759339 @default.
- W3125425610 hasBestOaLocation W31254256102 @default.
- W3125425610 hasConcept C105795698 @default.
- W3125425610 hasConcept C107673813 @default.
- W3125425610 hasConcept C111350023 @default.
- W3125425610 hasConcept C11413529 @default.
- W3125425610 hasConcept C117251300 @default.
- W3125425610 hasConcept C118671147 @default.
- W3125425610 hasConcept C137703641 @default.
- W3125425610 hasConcept C149782125 @default.
- W3125425610 hasConcept C177769412 @default.
- W3125425610 hasConcept C19499675 @default.
- W3125425610 hasConcept C33923547 @default.
- W3125425610 hasConcept C41008148 @default.
- W3125425610 hasConcept C8642999 @default.
- W3125425610 hasConcept C89128539 @default.
- W3125425610 hasConcept C95923904 @default.
- W3125425610 hasConceptScore W3125425610C105795698 @default.
- W3125425610 hasConceptScore W3125425610C107673813 @default.
- W3125425610 hasConceptScore W3125425610C111350023 @default.
- W3125425610 hasConceptScore W3125425610C11413529 @default.
- W3125425610 hasConceptScore W3125425610C117251300 @default.
- W3125425610 hasConceptScore W3125425610C118671147 @default.
- W3125425610 hasConceptScore W3125425610C137703641 @default.
- W3125425610 hasConceptScore W3125425610C149782125 @default.