Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131124920> ?p ?o ?g. }
- W3131124920 abstract "We present a parameter estimation method for nonlinear mixed effect models based on ordinary differential equations (NLME-ODEs). The method presented here aims at regularizing the estimation problem in presence of model misspecifications, practical identifiability issues and unknown initial conditions. For doing so, we define our estimator as the minimizer of a cost function which incorporates a possible gap between the assumed model at the population level and the specific individual dynamic. The cost function computation leads to formulate and solve optimal control problems at the subject level. This control theory approach allows to bypass the need to know or estimate initial conditions for each subject and it regularizes the estimation problem in presence of poorly identifiable parameters. Comparing to maximum likelihood, we show on simulation examples that our method improves estimation accuracy in possibly partially observed systems with unknown initial conditions or poorly identifiable parameters with or without model error. We conclude this work with a real application on antibody concentration data after vaccination against Ebola virus coming from phase 1 trials. We use the estimated model discrepancy at the subject level to analyze the presence of model misspecification." @default.
- W3131124920 created "2021-03-01" @default.
- W3131124920 creator A5014500176 @default.
- W3131124920 creator A5022077216 @default.
- W3131124920 creator A5037536070 @default.
- W3131124920 creator A5058229305 @default.
- W3131124920 creator A5063046778 @default.
- W3131124920 date "2022-12-10" @default.
- W3131124920 modified "2023-10-16" @default.
- W3131124920 title "Parameter estimation in nonlinear mixed effect models based on ordinary differential equations: An optimal control approach" @default.
- W3131124920 cites W1003609772 @default.
- W3131124920 cites W1517555081 @default.
- W3131124920 cites W1574514837 @default.
- W3131124920 cites W1575978816 @default.
- W3131124920 cites W1748143926 @default.
- W3131124920 cites W1862800359 @default.
- W3131124920 cites W1967495697 @default.
- W3131124920 cites W1973333099 @default.
- W3131124920 cites W1987443112 @default.
- W3131124920 cites W1987938204 @default.
- W3131124920 cites W1993147091 @default.
- W3131124920 cites W2004856659 @default.
- W3131124920 cites W2005149867 @default.
- W3131124920 cites W2012500654 @default.
- W3131124920 cites W2012994611 @default.
- W3131124920 cites W2021786831 @default.
- W3131124920 cites W2022098233 @default.
- W3131124920 cites W2025909913 @default.
- W3131124920 cites W2028918272 @default.
- W3131124920 cites W2032636277 @default.
- W3131124920 cites W2033439153 @default.
- W3131124920 cites W2040305816 @default.
- W3131124920 cites W2040767617 @default.
- W3131124920 cites W2042994047 @default.
- W3131124920 cites W2043044267 @default.
- W3131124920 cites W2046451925 @default.
- W3131124920 cites W2051319747 @default.
- W3131124920 cites W2051866702 @default.
- W3131124920 cites W2053874495 @default.
- W3131124920 cites W2056670922 @default.
- W3131124920 cites W2059336276 @default.
- W3131124920 cites W2063698062 @default.
- W3131124920 cites W2071490795 @default.
- W3131124920 cites W2090142805 @default.
- W3131124920 cites W2095019635 @default.
- W3131124920 cites W2095985058 @default.
- W3131124920 cites W2096567125 @default.
- W3131124920 cites W2102787760 @default.
- W3131124920 cites W2117450242 @default.
- W3131124920 cites W2141049087 @default.
- W3131124920 cites W2143155151 @default.
- W3131124920 cites W2149498546 @default.
- W3131124920 cites W2161304688 @default.
- W3131124920 cites W2170395887 @default.
- W3131124920 cites W2255206421 @default.
- W3131124920 cites W2272891881 @default.
- W3131124920 cites W2533795013 @default.
- W3131124920 cites W2606506505 @default.
- W3131124920 cites W2613469027 @default.
- W3131124920 cites W2949515262 @default.
- W3131124920 cites W2963045461 @default.
- W3131124920 cites W2963667321 @default.
- W3131124920 cites W3012887018 @default.
- W3131124920 cites W3023485132 @default.
- W3131124920 cites W3099393500 @default.
- W3131124920 hasPublicationYear "2022" @default.
- W3131124920 type Work @default.
- W3131124920 sameAs 3131124920 @default.
- W3131124920 citedByCount "0" @default.
- W3131124920 crossrefType "posted-content" @default.
- W3131124920 hasAuthorship W3131124920A5014500176 @default.
- W3131124920 hasAuthorship W3131124920A5022077216 @default.
- W3131124920 hasAuthorship W3131124920A5037536070 @default.
- W3131124920 hasAuthorship W3131124920A5058229305 @default.
- W3131124920 hasAuthorship W3131124920A5063046778 @default.
- W3131124920 hasBestOaLocation W31311249201 @default.
- W3131124920 hasConcept C121332964 @default.
- W3131124920 hasConcept C134306372 @default.
- W3131124920 hasConcept C154945302 @default.
- W3131124920 hasConcept C158622935 @default.
- W3131124920 hasConcept C162324750 @default.
- W3131124920 hasConcept C187736073 @default.
- W3131124920 hasConcept C2775924081 @default.
- W3131124920 hasConcept C28826006 @default.
- W3131124920 hasConcept C33923547 @default.
- W3131124920 hasConcept C41008148 @default.
- W3131124920 hasConcept C47446073 @default.
- W3131124920 hasConcept C51544822 @default.
- W3131124920 hasConcept C62520636 @default.
- W3131124920 hasConcept C78045399 @default.
- W3131124920 hasConcept C96250715 @default.
- W3131124920 hasConceptScore W3131124920C121332964 @default.
- W3131124920 hasConceptScore W3131124920C134306372 @default.
- W3131124920 hasConceptScore W3131124920C154945302 @default.
- W3131124920 hasConceptScore W3131124920C158622935 @default.
- W3131124920 hasConceptScore W3131124920C162324750 @default.
- W3131124920 hasConceptScore W3131124920C187736073 @default.
- W3131124920 hasConceptScore W3131124920C2775924081 @default.
- W3131124920 hasConceptScore W3131124920C28826006 @default.
- W3131124920 hasConceptScore W3131124920C33923547 @default.