Matches in SemOpenAlex for { <https://semopenalex.org/work/W3149377941> ?p ?o ?g. }
- W3149377941 endingPage "105398" @default.
- W3149377941 startingPage "105398" @default.
- W3149377941 abstract "Mechanical system is usually composed of multiple complex structures, which endure the combine action of multi-physical fields (e.g., flow field, thermal field, structural field, and so forth) during operation. Structural response, for instance, deformation, stress, strain, fatigue life, etc., have dynamic and time-varying attributes, their values play an important role in safeguarding function properly, and affects the safety of entire system. Probabilistic analyses (including reliability evaluation and sensitivity analysis) can effectively identify potential risk and improve the reliability level. The traditional way is to use Monte Carlo (MC) simulation to achieve probabilistic analyses of complex structures. However, the MC simulation needs to perform a large amount of calculations to complete the specified task analysis, the computational burden is too heavy for the reliability evaluation and sensitivity analysis of structural dynamic response. To efficiently perform probabilistic analyses of structural dynamic response, we therefore developed a surrogate model method, namely modified Kriging-based moving extremum framework (MKMEF, short for), absorbing extremum thought, moving least squares (MLS) technique, Kriging model and collaborative evolution genetic algorithm (CEGA). For this proposed MKMEF, the extremum thought is used to transform dynamic output response into extremum values within a time domain, and the MLS method is applied to obtain efficient samples to derive Kriging model. Besides, the CEGA is employed to replace gradient descent method to resolve maximum likelihood equation (MLE) and find the optimal hyperparameters of Kriging model. Furthermore, an aeroengine high-pressure turbine blisk is treated as a case study, the probabilistic analyses of radial running deformation is executed to validate the effectiveness of the proposed method by considering the fluid-thermal-solid interaction. The analytical results show that the reliability degree of turbine blisk is 99.78%, when the allowable value of radial running deformation is 2.5071 × 10−3 m (determined by 3 sigma levels), and the highest impact on the turbine blisk radial running deformation is gas temperature, followed by inlet velocity, rational speed, material density and outlet pressure. The comparison of methods including direct simulation, response surface method-based extremum thought (ERSM) and traditional Kriging model, shows that the developed MKMEF holds high-efficiency and high-accuracy for the probabilistic analyses of turbine blisk radial running deformation. The presented efforts provide a useful insight for assessing probabilistic analyses of structural dynamic response and enrich mechanical reliability theory." @default.
- W3149377941 created "2021-04-13" @default.
- W3149377941 creator A5017200772 @default.
- W3149377941 creator A5024196950 @default.
- W3149377941 creator A5036536186 @default.
- W3149377941 creator A5041852496 @default.
- W3149377941 creator A5059446097 @default.
- W3149377941 creator A5090352836 @default.
- W3149377941 date "2021-07-01" @default.
- W3149377941 modified "2023-10-17" @default.
- W3149377941 title "Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework" @default.
- W3149377941 cites W1959389624 @default.
- W3149377941 cites W1963978089 @default.
- W3149377941 cites W1968779197 @default.
- W3149377941 cites W1978459922 @default.
- W3149377941 cites W1979050203 @default.
- W3149377941 cites W2002471307 @default.
- W3149377941 cites W2007535697 @default.
- W3149377941 cites W2012703615 @default.
- W3149377941 cites W2028738140 @default.
- W3149377941 cites W2029310432 @default.
- W3149377941 cites W2045979647 @default.
- W3149377941 cites W2056107846 @default.
- W3149377941 cites W2058560387 @default.
- W3149377941 cites W2077960812 @default.
- W3149377941 cites W2091562394 @default.
- W3149377941 cites W2207320530 @default.
- W3149377941 cites W2396003402 @default.
- W3149377941 cites W2558316061 @default.
- W3149377941 cites W2580942568 @default.
- W3149377941 cites W2586722207 @default.
- W3149377941 cites W2766044833 @default.
- W3149377941 cites W2791714450 @default.
- W3149377941 cites W2806105427 @default.
- W3149377941 cites W2810067445 @default.
- W3149377941 cites W2898171263 @default.
- W3149377941 cites W2941007161 @default.
- W3149377941 cites W2992077865 @default.
- W3149377941 cites W3000926062 @default.
- W3149377941 cites W3003677515 @default.
- W3149377941 cites W3015949336 @default.
- W3149377941 cites W3025605929 @default.
- W3149377941 cites W3035171971 @default.
- W3149377941 cites W3045774042 @default.
- W3149377941 cites W3047323970 @default.
- W3149377941 cites W3121155404 @default.
- W3149377941 cites W4252352694 @default.
- W3149377941 doi "https://doi.org/10.1016/j.engfailanal.2021.105398" @default.
- W3149377941 hasPublicationYear "2021" @default.
- W3149377941 type Work @default.
- W3149377941 sameAs 3149377941 @default.
- W3149377941 citedByCount "50" @default.
- W3149377941 countsByYear W31493779412021 @default.
- W3149377941 countsByYear W31493779412022 @default.
- W3149377941 countsByYear W31493779412023 @default.
- W3149377941 crossrefType "journal-article" @default.
- W3149377941 hasAuthorship W3149377941A5017200772 @default.
- W3149377941 hasAuthorship W3149377941A5024196950 @default.
- W3149377941 hasAuthorship W3149377941A5036536186 @default.
- W3149377941 hasAuthorship W3149377941A5041852496 @default.
- W3149377941 hasAuthorship W3149377941A5059446097 @default.
- W3149377941 hasAuthorship W3149377941A5090352836 @default.
- W3149377941 hasConcept C119857082 @default.
- W3149377941 hasConcept C121332964 @default.
- W3149377941 hasConcept C127413603 @default.
- W3149377941 hasConcept C131675550 @default.
- W3149377941 hasConcept C154945302 @default.
- W3149377941 hasConcept C163258240 @default.
- W3149377941 hasConcept C21200559 @default.
- W3149377941 hasConcept C24326235 @default.
- W3149377941 hasConcept C24404364 @default.
- W3149377941 hasConcept C2780580100 @default.
- W3149377941 hasConcept C28826006 @default.
- W3149377941 hasConcept C33923547 @default.
- W3149377941 hasConcept C41008148 @default.
- W3149377941 hasConcept C43214815 @default.
- W3149377941 hasConcept C49937458 @default.
- W3149377941 hasConcept C62520636 @default.
- W3149377941 hasConcept C81692654 @default.
- W3149377941 hasConceptScore W3149377941C119857082 @default.
- W3149377941 hasConceptScore W3149377941C121332964 @default.
- W3149377941 hasConceptScore W3149377941C127413603 @default.
- W3149377941 hasConceptScore W3149377941C131675550 @default.
- W3149377941 hasConceptScore W3149377941C154945302 @default.
- W3149377941 hasConceptScore W3149377941C163258240 @default.
- W3149377941 hasConceptScore W3149377941C21200559 @default.
- W3149377941 hasConceptScore W3149377941C24326235 @default.
- W3149377941 hasConceptScore W3149377941C24404364 @default.
- W3149377941 hasConceptScore W3149377941C2780580100 @default.
- W3149377941 hasConceptScore W3149377941C28826006 @default.
- W3149377941 hasConceptScore W3149377941C33923547 @default.
- W3149377941 hasConceptScore W3149377941C41008148 @default.
- W3149377941 hasConceptScore W3149377941C43214815 @default.
- W3149377941 hasConceptScore W3149377941C49937458 @default.
- W3149377941 hasConceptScore W3149377941C62520636 @default.
- W3149377941 hasConceptScore W3149377941C81692654 @default.
- W3149377941 hasFunder F4320321001 @default.
- W3149377941 hasLocation W31493779411 @default.