Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174446023> ?p ?o ?g. }
- W3174446023 abstract "Abstract Virtual screening is receiving renewed attention in drug discovery, but progress is hampered by challenges on two fronts: handling the ever increasing sizes of libraries of drug-like compounds, and separating true positives from false positives. Here we developed a machine learning-enabled pipeline for large-scale virtual screening that promises breakthroughs on both fronts. By clustering compounds according to molecular properties and limited docking against a drug target, the full library was trimmed by 10-fold; the remaining compounds were then screened individually by docking; and finally a dense neural network was trained to classify the hits into true and false positives. As illustration, we screened for inhibitors against RPN11, the deubiquitinase subunit of the proteasome and a drug target for breast cancer. TOC Graphic" @default.
- W3174446023 created "2021-07-05" @default.
- W3174446023 creator A5023189559 @default.
- W3174446023 creator A5046197938 @default.
- W3174446023 date "2021-06-21" @default.
- W3174446023 modified "2023-09-23" @default.
- W3174446023 title "A Machine Learning-Enabled Pipeline for Large-Scale Virtual Drug Screening" @default.
- W3174446023 cites W1757990252 @default.
- W3174446023 cites W1965667503 @default.
- W3174446023 cites W1993285168 @default.
- W3174446023 cites W1998848097 @default.
- W3174446023 cites W2014952106 @default.
- W3174446023 cites W2030980866 @default.
- W3174446023 cites W2035687084 @default.
- W3174446023 cites W2035890032 @default.
- W3174446023 cites W2038532826 @default.
- W3174446023 cites W2038758364 @default.
- W3174446023 cites W2041791898 @default.
- W3174446023 cites W2055337326 @default.
- W3174446023 cites W2078020645 @default.
- W3174446023 cites W2150981663 @default.
- W3174446023 cites W2159887157 @default.
- W3174446023 cites W2161002823 @default.
- W3174446023 cites W2164253678 @default.
- W3174446023 cites W2169678694 @default.
- W3174446023 cites W2177658341 @default.
- W3174446023 cites W2274656763 @default.
- W3174446023 cites W2336040088 @default.
- W3174446023 cites W2337812067 @default.
- W3174446023 cites W2345532267 @default.
- W3174446023 cites W2477420580 @default.
- W3174446023 cites W2530751905 @default.
- W3174446023 cites W2534266625 @default.
- W3174446023 cites W2592937673 @default.
- W3174446023 cites W2755682685 @default.
- W3174446023 cites W2770320302 @default.
- W3174446023 cites W2781821160 @default.
- W3174446023 cites W2786858370 @default.
- W3174446023 cites W2791922616 @default.
- W3174446023 cites W2888127170 @default.
- W3174446023 cites W2897175688 @default.
- W3174446023 cites W2912171584 @default.
- W3174446023 cites W2999164376 @default.
- W3174446023 cites W3005009369 @default.
- W3174446023 cites W3034390843 @default.
- W3174446023 cites W3043660595 @default.
- W3174446023 cites W3086524105 @default.
- W3174446023 cites W3094640617 @default.
- W3174446023 cites W3094648376 @default.
- W3174446023 cites W3098189759 @default.
- W3174446023 cites W3156693194 @default.
- W3174446023 cites W3164542130 @default.
- W3174446023 cites W95014119 @default.
- W3174446023 doi "https://doi.org/10.1101/2021.06.20.449177" @default.
- W3174446023 hasPublicationYear "2021" @default.
- W3174446023 type Work @default.
- W3174446023 sameAs 3174446023 @default.
- W3174446023 citedByCount "1" @default.
- W3174446023 countsByYear W31744460232023 @default.
- W3174446023 crossrefType "posted-content" @default.
- W3174446023 hasAuthorship W3174446023A5023189559 @default.
- W3174446023 hasAuthorship W3174446023A5046197938 @default.
- W3174446023 hasBestOaLocation W31744460231 @default.
- W3174446023 hasConcept C103697762 @default.
- W3174446023 hasConcept C119857082 @default.
- W3174446023 hasConcept C154945302 @default.
- W3174446023 hasConcept C199360897 @default.
- W3174446023 hasConcept C2780035454 @default.
- W3174446023 hasConcept C2989486834 @default.
- W3174446023 hasConcept C41008148 @default.
- W3174446023 hasConcept C43521106 @default.
- W3174446023 hasConcept C60644358 @default.
- W3174446023 hasConcept C64869954 @default.
- W3174446023 hasConcept C70721500 @default.
- W3174446023 hasConcept C71924100 @default.
- W3174446023 hasConcept C74187038 @default.
- W3174446023 hasConcept C86803240 @default.
- W3174446023 hasConcept C98274493 @default.
- W3174446023 hasConceptScore W3174446023C103697762 @default.
- W3174446023 hasConceptScore W3174446023C119857082 @default.
- W3174446023 hasConceptScore W3174446023C154945302 @default.
- W3174446023 hasConceptScore W3174446023C199360897 @default.
- W3174446023 hasConceptScore W3174446023C2780035454 @default.
- W3174446023 hasConceptScore W3174446023C2989486834 @default.
- W3174446023 hasConceptScore W3174446023C41008148 @default.
- W3174446023 hasConceptScore W3174446023C43521106 @default.
- W3174446023 hasConceptScore W3174446023C60644358 @default.
- W3174446023 hasConceptScore W3174446023C64869954 @default.
- W3174446023 hasConceptScore W3174446023C70721500 @default.
- W3174446023 hasConceptScore W3174446023C71924100 @default.
- W3174446023 hasConceptScore W3174446023C74187038 @default.
- W3174446023 hasConceptScore W3174446023C86803240 @default.
- W3174446023 hasConceptScore W3174446023C98274493 @default.
- W3174446023 hasLocation W31744460231 @default.
- W3174446023 hasLocation W31744460232 @default.
- W3174446023 hasOpenAccess W3174446023 @default.
- W3174446023 hasPrimaryLocation W31744460231 @default.
- W3174446023 hasRelatedWork W1714666523 @default.
- W3174446023 hasRelatedWork W2059317968 @default.
- W3174446023 hasRelatedWork W2071791280 @default.