Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178227131> ?p ?o ?g. }
- W3178227131 endingPage "1447" @default.
- W3178227131 startingPage "1432" @default.
- W3178227131 abstract "To assess the ability of imaging-based deep learning to detect radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs.Knee lateral view radiographs were extracted from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 18,436 knees). Patellar region-of-interest (ROI) was first automatically detected, and subsequently, end-to-end deep convolutional neural networks (CNNs) were trained and validated to detect the status of patellofemoral OA. Patellar ROI was detected using deep-learning-based object detection method. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of classification models was assessed using the area under the receiver operating characteristic curve (ROC AUC) and the average precision (AP) obtained from the Precision-Recall (PR) curve in the stratified 5-fold cross validation setting.Of the 18,436 knees, 3,425 (19%) had PFOA. AUC and AP for the reference model including age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade to detect PFOA were 0.806 and 0.478, respectively. The CNN model that used only image data significantly improved the classifier performance (ROC AUC = 0.958, AP = 0.862).We present the first machine learning based automatic PFOA detection method. Furthermore, our deep learning based model trained on patella region from knee lateral view radiographs performs better at detecting PFOA than models based on patient characteristics and clinical assessments." @default.
- W3178227131 created "2021-07-19" @default.
- W3178227131 creator A5061643358 @default.
- W3178227131 creator A5071275238 @default.
- W3178227131 creator A5077991621 @default.
- W3178227131 date "2021-10-01" @default.
- W3178227131 modified "2023-10-16" @default.
- W3178227131 title "Automated detection of patellofemoral osteoarthritis from knee lateral view radiographs using deep learning: data from the Multicenter Osteoarthritis Study (MOST)" @default.
- W3178227131 cites W1899530158 @default.
- W3178227131 cites W1966716734 @default.
- W3178227131 cites W2013904927 @default.
- W3178227131 cites W2020632067 @default.
- W3178227131 cites W2036491373 @default.
- W3178227131 cites W2051295551 @default.
- W3178227131 cites W2067299535 @default.
- W3178227131 cites W2067530260 @default.
- W3178227131 cites W2078410116 @default.
- W3178227131 cites W2087241560 @default.
- W3178227131 cites W2101581466 @default.
- W3178227131 cites W2102902844 @default.
- W3178227131 cites W2109489446 @default.
- W3178227131 cites W2128878586 @default.
- W3178227131 cites W2134927227 @default.
- W3178227131 cites W2140603563 @default.
- W3178227131 cites W2147148117 @default.
- W3178227131 cites W2157317456 @default.
- W3178227131 cites W2158698691 @default.
- W3178227131 cites W2165960715 @default.
- W3178227131 cites W2169243444 @default.
- W3178227131 cites W2255212786 @default.
- W3178227131 cites W2351957173 @default.
- W3178227131 cites W2403226928 @default.
- W3178227131 cites W2598604328 @default.
- W3178227131 cites W2607548279 @default.
- W3178227131 cites W3039998418 @default.
- W3178227131 doi "https://doi.org/10.1016/j.joca.2021.06.011" @default.
- W3178227131 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34245873" @default.
- W3178227131 hasPublicationYear "2021" @default.
- W3178227131 type Work @default.
- W3178227131 sameAs 3178227131 @default.
- W3178227131 citedByCount "11" @default.
- W3178227131 countsByYear W31782271312021 @default.
- W3178227131 countsByYear W31782271312022 @default.
- W3178227131 countsByYear W31782271312023 @default.
- W3178227131 crossrefType "journal-article" @default.
- W3178227131 hasAuthorship W3178227131A5061643358 @default.
- W3178227131 hasAuthorship W3178227131A5071275238 @default.
- W3178227131 hasAuthorship W3178227131A5077991621 @default.
- W3178227131 hasBestOaLocation W31782271311 @default.
- W3178227131 hasConcept C108583219 @default.
- W3178227131 hasConcept C126322002 @default.
- W3178227131 hasConcept C126838900 @default.
- W3178227131 hasConcept C142724271 @default.
- W3178227131 hasConcept C154945302 @default.
- W3178227131 hasConcept C204787440 @default.
- W3178227131 hasConcept C2776164576 @default.
- W3178227131 hasConcept C2779286237 @default.
- W3178227131 hasConcept C2780221984 @default.
- W3178227131 hasConcept C36454342 @default.
- W3178227131 hasConcept C41008148 @default.
- W3178227131 hasConcept C58471807 @default.
- W3178227131 hasConcept C71924100 @default.
- W3178227131 hasConcept C76318530 @default.
- W3178227131 hasConcept C81363708 @default.
- W3178227131 hasConceptScore W3178227131C108583219 @default.
- W3178227131 hasConceptScore W3178227131C126322002 @default.
- W3178227131 hasConceptScore W3178227131C126838900 @default.
- W3178227131 hasConceptScore W3178227131C142724271 @default.
- W3178227131 hasConceptScore W3178227131C154945302 @default.
- W3178227131 hasConceptScore W3178227131C204787440 @default.
- W3178227131 hasConceptScore W3178227131C2776164576 @default.
- W3178227131 hasConceptScore W3178227131C2779286237 @default.
- W3178227131 hasConceptScore W3178227131C2780221984 @default.
- W3178227131 hasConceptScore W3178227131C36454342 @default.
- W3178227131 hasConceptScore W3178227131C41008148 @default.
- W3178227131 hasConceptScore W3178227131C58471807 @default.
- W3178227131 hasConceptScore W3178227131C71924100 @default.
- W3178227131 hasConceptScore W3178227131C76318530 @default.
- W3178227131 hasConceptScore W3178227131C81363708 @default.
- W3178227131 hasFunder F4320306085 @default.
- W3178227131 hasFunder F4320309480 @default.
- W3178227131 hasFunder F4320322795 @default.
- W3178227131 hasFunder F4320323692 @default.
- W3178227131 hasFunder F4320332161 @default.
- W3178227131 hasFunder F4320336704 @default.
- W3178227131 hasIssue "10" @default.
- W3178227131 hasLocation W31782271311 @default.
- W3178227131 hasLocation W31782271312 @default.
- W3178227131 hasLocation W31782271313 @default.
- W3178227131 hasLocation W31782271314 @default.
- W3178227131 hasOpenAccess W3178227131 @default.
- W3178227131 hasPrimaryLocation W31782271311 @default.
- W3178227131 hasRelatedWork W1985286937 @default.
- W3178227131 hasRelatedWork W1988810699 @default.
- W3178227131 hasRelatedWork W2045407791 @default.
- W3178227131 hasRelatedWork W2095773979 @default.
- W3178227131 hasRelatedWork W2317839817 @default.
- W3178227131 hasRelatedWork W2322423563 @default.