Matches in SemOpenAlex for { <https://semopenalex.org/work/W3191932968> ?p ?o ?g. }
- W3191932968 endingPage "764" @default.
- W3191932968 startingPage "753" @default.
- W3191932968 abstract "Rotating object detection has recently attracted increasing attention in aerial photographs, remote sensing images, etc. In this paper, we propose a rotating object detector TS4Net, which contains anchor refinement module (ARM) and two-stage sample selective strategy (TS4). The ARM can convert the preset horizontal anchors into high-quality rotated anchors through two-stage refinement, which also adopts a rotated Intersection-over-Union(IoU) prediction branch to improve localization accuracy in the second stage. TS4 module utilizes different constrained sample selective strategies to allocate positive and negative samples, which is adaptive to the regression task in different stages. Benefiting from the ARM and TS4, the TS4Net can achieve superior performance for rotating object detection solely with one preset horizontal anchor. Considering that most rotating object detection datasets mainly focus on the field of remote sensing and are shot in high-altitude scenes. We present a low-altitude drone-based dataset, named UAV-ROD, aiming to promote the research and development in rotating object detection and UAV applications. The UAV-ROD dataset can be used in rotating object detection, vehicle orientation recognition, and object counting tasks. Extensive experiments on the UAV-ROD dataset and four datasets demonstrate that our method achieves competitive performance against most state-of-the-art methods." @default.
- W3191932968 created "2021-08-16" @default.
- W3191932968 creator A5021628372 @default.
- W3191932968 creator A5022715637 @default.
- W3191932968 creator A5073124436 @default.
- W3191932968 creator A5076362222 @default.
- W3191932968 creator A5084639320 @default.
- W3191932968 date "2022-08-01" @default.
- W3191932968 modified "2023-09-23" @default.
- W3191932968 title "TS4Net: Two-stage sample selective strategy for rotating object detection" @default.
- W3191932968 cites W2194775991 @default.
- W3191932968 cites W2296151615 @default.
- W3191932968 cites W2400138547 @default.
- W3191932968 cites W2512351403 @default.
- W3191932968 cites W2565639579 @default.
- W3191932968 cites W2570343428 @default.
- W3191932968 cites W2577537809 @default.
- W3191932968 cites W2594177559 @default.
- W3191932968 cites W2625829240 @default.
- W3191932968 cites W2784050770 @default.
- W3191932968 cites W2788202095 @default.
- W3191932968 cites W2790688320 @default.
- W3191932968 cites W2855340099 @default.
- W3191932968 cites W2886904239 @default.
- W3191932968 cites W2899594603 @default.
- W3191932968 cites W2913994632 @default.
- W3191932968 cites W2955031293 @default.
- W3191932968 cites W2962749812 @default.
- W3191932968 cites W2962777203 @default.
- W3191932968 cites W2962921175 @default.
- W3191932968 cites W2963037989 @default.
- W3191932968 cites W2963351448 @default.
- W3191932968 cites W2963402592 @default.
- W3191932968 cites W2964241181 @default.
- W3191932968 cites W2964294787 @default.
- W3191932968 cites W2964979676 @default.
- W3191932968 cites W2970370255 @default.
- W3191932968 cites W2982770724 @default.
- W3191932968 cites W2991359031 @default.
- W3191932968 cites W2991363140 @default.
- W3191932968 cites W3003295287 @default.
- W3191932968 cites W3014595575 @default.
- W3191932968 cites W3034993937 @default.
- W3191932968 cites W3035396860 @default.
- W3191932968 cites W3046174881 @default.
- W3191932968 cites W3086049282 @default.
- W3191932968 cites W3093220398 @default.
- W3191932968 cites W3097779785 @default.
- W3191932968 cites W3098218837 @default.
- W3191932968 cites W3106250896 @default.
- W3191932968 cites W3107867277 @default.
- W3191932968 cites W3109055651 @default.
- W3191932968 cites W3113728373 @default.
- W3191932968 cites W3119027652 @default.
- W3191932968 cites W3172087149 @default.
- W3191932968 cites W3174389852 @default.
- W3191932968 cites W3175496347 @default.
- W3191932968 cites W3177105943 @default.
- W3191932968 doi "https://doi.org/10.1016/j.neucom.2022.06.049" @default.
- W3191932968 hasPublicationYear "2022" @default.
- W3191932968 type Work @default.
- W3191932968 sameAs 3191932968 @default.
- W3191932968 citedByCount "8" @default.
- W3191932968 countsByYear W31919329682022 @default.
- W3191932968 countsByYear W31919329682023 @default.
- W3191932968 crossrefType "journal-article" @default.
- W3191932968 hasAuthorship W3191932968A5021628372 @default.
- W3191932968 hasAuthorship W3191932968A5022715637 @default.
- W3191932968 hasAuthorship W3191932968A5073124436 @default.
- W3191932968 hasAuthorship W3191932968A5076362222 @default.
- W3191932968 hasAuthorship W3191932968A5084639320 @default.
- W3191932968 hasBestOaLocation W31919329682 @default.
- W3191932968 hasConcept C127413603 @default.
- W3191932968 hasConcept C146978453 @default.
- W3191932968 hasConcept C153180895 @default.
- W3191932968 hasConcept C154945302 @default.
- W3191932968 hasConcept C16345878 @default.
- W3191932968 hasConcept C185592680 @default.
- W3191932968 hasConcept C198531522 @default.
- W3191932968 hasConcept C201995342 @default.
- W3191932968 hasConcept C202444582 @default.
- W3191932968 hasConcept C2524010 @default.
- W3191932968 hasConcept C2776151529 @default.
- W3191932968 hasConcept C2780451532 @default.
- W3191932968 hasConcept C2781238097 @default.
- W3191932968 hasConcept C31972630 @default.
- W3191932968 hasConcept C33923547 @default.
- W3191932968 hasConcept C41008148 @default.
- W3191932968 hasConcept C43617362 @default.
- W3191932968 hasConcept C64543145 @default.
- W3191932968 hasConcept C76155785 @default.
- W3191932968 hasConcept C94915269 @default.
- W3191932968 hasConcept C9652623 @default.
- W3191932968 hasConceptScore W3191932968C127413603 @default.
- W3191932968 hasConceptScore W3191932968C146978453 @default.
- W3191932968 hasConceptScore W3191932968C153180895 @default.
- W3191932968 hasConceptScore W3191932968C154945302 @default.
- W3191932968 hasConceptScore W3191932968C16345878 @default.