Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196025567> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3196025567 endingPage "100272" @default.
- W3196025567 startingPage "100272" @default.
- W3196025567 abstract "Digital Twin technology is emerging as the digitization platform to enhance the industrial information processing and management in concern with virtual and physical entities. It paves the path for integrated industrial data analysis by combining IoT and Artificial Intelligence for better data interpretation. At present in oil industry, pipelines prevail to be feasible mode, the risk probability rate is getting increased and maintenance system becomes difficult with attention to the earlier prediction of accidents risks by undertaking entire pipeline. This paper aims to provide the frame structure of Digital Twin based on machine learning and prognostics algorithms model to analyze and predict the risk probability rate of oil pipeline system. Prognostics focuses on the detection of a failure precursor by estimating risk condition with respect to the pressure data towards the evaluation of remaining useful life (RUL). The abnormality of pressure attribute is taken in prognostic analysis for risk probability estimation followed by Dirichlet Process Clustering and Canopy clustering to segregate the abnormal pressure drop and rise. Using multiple oil substation data integration platform, the features are extracted using manifold learning methods and the best feature probability rates are evaluated using kernel based SVM algorithm to provide on-time control action on the entire oil pipeline system through efficient wireless data communication between server and the oil substations. As a result, the proposed work creates Virtual Intelligent Integrated Automated Control System to predict the risk rate in oil industry by integrating entire transmission lines through enhanced wireless information networks in remote locations." @default.
- W3196025567 created "2021-08-30" @default.
- W3196025567 creator A5003491781 @default.
- W3196025567 creator A5027281353 @default.
- W3196025567 creator A5040895920 @default.
- W3196025567 creator A5083232890 @default.
- W3196025567 date "2022-03-01" @default.
- W3196025567 modified "2023-10-16" @default.
- W3196025567 title "Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques" @default.
- W3196025567 cites W1605320276 @default.
- W3196025567 cites W1970412479 @default.
- W3196025567 cites W1983522361 @default.
- W3196025567 cites W2026892459 @default.
- W3196025567 cites W2027636990 @default.
- W3196025567 cites W2028154759 @default.
- W3196025567 cites W2052916750 @default.
- W3196025567 cites W2064678806 @default.
- W3196025567 cites W2084242244 @default.
- W3196025567 cites W2088773033 @default.
- W3196025567 cites W2121257934 @default.
- W3196025567 cites W2168394903 @default.
- W3196025567 cites W2216488981 @default.
- W3196025567 cites W2266511326 @default.
- W3196025567 cites W2399087921 @default.
- W3196025567 cites W2566380007 @default.
- W3196025567 cites W2604429724 @default.
- W3196025567 cites W2764021609 @default.
- W3196025567 cites W2793462607 @default.
- W3196025567 cites W2892566235 @default.
- W3196025567 cites W2893508884 @default.
- W3196025567 cites W2897094182 @default.
- W3196025567 cites W2990559378 @default.
- W3196025567 cites W3003677894 @default.
- W3196025567 cites W3037453292 @default.
- W3196025567 cites W3082915523 @default.
- W3196025567 cites W3092907177 @default.
- W3196025567 cites W3154971139 @default.
- W3196025567 cites W3188108888 @default.
- W3196025567 doi "https://doi.org/10.1016/j.jii.2021.100272" @default.
- W3196025567 hasPublicationYear "2022" @default.
- W3196025567 type Work @default.
- W3196025567 sameAs 3196025567 @default.
- W3196025567 citedByCount "17" @default.
- W3196025567 countsByYear W31960255672022 @default.
- W3196025567 countsByYear W31960255672023 @default.
- W3196025567 crossrefType "journal-article" @default.
- W3196025567 hasAuthorship W3196025567A5003491781 @default.
- W3196025567 hasAuthorship W3196025567A5027281353 @default.
- W3196025567 hasAuthorship W3196025567A5040895920 @default.
- W3196025567 hasAuthorship W3196025567A5083232890 @default.
- W3196025567 hasConcept C111919701 @default.
- W3196025567 hasConcept C119857082 @default.
- W3196025567 hasConcept C127413603 @default.
- W3196025567 hasConcept C154945302 @default.
- W3196025567 hasConcept C201995342 @default.
- W3196025567 hasConcept C41008148 @default.
- W3196025567 hasConcept C43521106 @default.
- W3196025567 hasConcept C77595967 @default.
- W3196025567 hasConcept C78762247 @default.
- W3196025567 hasConcept C96250715 @default.
- W3196025567 hasConceptScore W3196025567C111919701 @default.
- W3196025567 hasConceptScore W3196025567C119857082 @default.
- W3196025567 hasConceptScore W3196025567C127413603 @default.
- W3196025567 hasConceptScore W3196025567C154945302 @default.
- W3196025567 hasConceptScore W3196025567C201995342 @default.
- W3196025567 hasConceptScore W3196025567C41008148 @default.
- W3196025567 hasConceptScore W3196025567C43521106 @default.
- W3196025567 hasConceptScore W3196025567C77595967 @default.
- W3196025567 hasConceptScore W3196025567C78762247 @default.
- W3196025567 hasConceptScore W3196025567C96250715 @default.
- W3196025567 hasFunder F4320320721 @default.
- W3196025567 hasLocation W31960255671 @default.
- W3196025567 hasOpenAccess W3196025567 @default.
- W3196025567 hasPrimaryLocation W31960255671 @default.
- W3196025567 hasRelatedWork W2371796336 @default.
- W3196025567 hasRelatedWork W2899084033 @default.
- W3196025567 hasRelatedWork W2961085424 @default.
- W3196025567 hasRelatedWork W2992516105 @default.
- W3196025567 hasRelatedWork W3046775127 @default.
- W3196025567 hasRelatedWork W4205958290 @default.
- W3196025567 hasRelatedWork W4286629047 @default.
- W3196025567 hasRelatedWork W4306321456 @default.
- W3196025567 hasRelatedWork W4306674287 @default.
- W3196025567 hasRelatedWork W4224009465 @default.
- W3196025567 hasVolume "26" @default.
- W3196025567 isParatext "false" @default.
- W3196025567 isRetracted "false" @default.
- W3196025567 magId "3196025567" @default.
- W3196025567 workType "article" @default.