Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208793219> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3208793219 endingPage "107373" @default.
- W3208793219 startingPage "107373" @default.
- W3208793219 abstract "Nonlinear Mixed effects models are hidden variables models that are widely used in many fields such as pharmacometrics. In such models, the distribution characteristics of hidden variables can be specified by including several parameters such as covariates or correlations which must be selected. Recent development of pharmacogenomics has brought averaged/high dimensional problems to the field of nonlinear mixed effects modeling for which standard covariates selection techniques like stepwise methods are not well suited. The selection of covariates and correlation parameters using a penalized likelihood approach is proposed. The penalized likelihood problem is solved using a stochastic proximal gradient algorithm to avoid inner-outer iterations. Speed of convergence of the proximal gradient algorithm is improved using component-wise adaptive gradient step sizes. The practical implementation and tuning of the proximal gradient algorithm are explored using simulations. Calibration of regularization parameters is performed by minimizing the Bayesian Information Criterion using particle swarm optimization, a zero-order optimization procedure. The use of warm restart and parallelization allowed computing time to be reduced significantly. The performance of the proposed method compared to the traditional grid search strategy is explored using simulated data. Finally, an application to real data from two pharmacokinetics studies is provided, one studying an antifibrinolytic and the other studying an antibiotic." @default.
- W3208793219 created "2021-11-08" @default.
- W3208793219 creator A5046283067 @default.
- W3208793219 date "2022-03-01" @default.
- W3208793219 modified "2023-09-29" @default.
- W3208793219 title "Fast selection of nonlinear mixed effect models using penalized likelihood" @default.
- W3208793219 cites W1510052597 @default.
- W3208793219 cites W1575046762 @default.
- W3208793219 cites W1786686177 @default.
- W3208793219 cites W1858591576 @default.
- W3208793219 cites W1975875951 @default.
- W3208793219 cites W1980092349 @default.
- W3208793219 cites W1987371344 @default.
- W3208793219 cites W1989148484 @default.
- W3208793219 cites W1994680268 @default.
- W3208793219 cites W2016713083 @default.
- W3208793219 cites W2020925091 @default.
- W3208793219 cites W2025888759 @default.
- W3208793219 cites W2048615903 @default.
- W3208793219 cites W2055742299 @default.
- W3208793219 cites W2055855178 @default.
- W3208793219 cites W2074586297 @default.
- W3208793219 cites W2080816645 @default.
- W3208793219 cites W2093117373 @default.
- W3208793219 cites W2162693370 @default.
- W3208793219 cites W2173282702 @default.
- W3208793219 cites W2271221198 @default.
- W3208793219 cites W2730485792 @default.
- W3208793219 cites W2766554807 @default.
- W3208793219 cites W2963490248 @default.
- W3208793219 cites W3026264346 @default.
- W3208793219 cites W3103935298 @default.
- W3208793219 cites W3204186184 @default.
- W3208793219 cites W2072634211 @default.
- W3208793219 doi "https://doi.org/10.1016/j.csda.2021.107373" @default.
- W3208793219 hasPublicationYear "2022" @default.
- W3208793219 type Work @default.
- W3208793219 sameAs 3208793219 @default.
- W3208793219 citedByCount "0" @default.
- W3208793219 crossrefType "journal-article" @default.
- W3208793219 hasAuthorship W3208793219A5046283067 @default.
- W3208793219 hasBestOaLocation W32087932191 @default.
- W3208793219 hasConcept C105795698 @default.
- W3208793219 hasConcept C11413529 @default.
- W3208793219 hasConcept C121332964 @default.
- W3208793219 hasConcept C149782125 @default.
- W3208793219 hasConcept C154945302 @default.
- W3208793219 hasConcept C158622935 @default.
- W3208793219 hasConcept C16012445 @default.
- W3208793219 hasConcept C28826006 @default.
- W3208793219 hasConcept C33923547 @default.
- W3208793219 hasConcept C41008148 @default.
- W3208793219 hasConcept C49781872 @default.
- W3208793219 hasConcept C62520636 @default.
- W3208793219 hasConcept C81917197 @default.
- W3208793219 hasConcept C93959086 @default.
- W3208793219 hasConceptScore W3208793219C105795698 @default.
- W3208793219 hasConceptScore W3208793219C11413529 @default.
- W3208793219 hasConceptScore W3208793219C121332964 @default.
- W3208793219 hasConceptScore W3208793219C149782125 @default.
- W3208793219 hasConceptScore W3208793219C154945302 @default.
- W3208793219 hasConceptScore W3208793219C158622935 @default.
- W3208793219 hasConceptScore W3208793219C16012445 @default.
- W3208793219 hasConceptScore W3208793219C28826006 @default.
- W3208793219 hasConceptScore W3208793219C33923547 @default.
- W3208793219 hasConceptScore W3208793219C41008148 @default.
- W3208793219 hasConceptScore W3208793219C49781872 @default.
- W3208793219 hasConceptScore W3208793219C62520636 @default.
- W3208793219 hasConceptScore W3208793219C81917197 @default.
- W3208793219 hasConceptScore W3208793219C93959086 @default.
- W3208793219 hasLocation W32087932191 @default.
- W3208793219 hasLocation W32087932192 @default.
- W3208793219 hasOpenAccess W3208793219 @default.
- W3208793219 hasPrimaryLocation W32087932191 @default.
- W3208793219 hasRelatedWork W1966413210 @default.
- W3208793219 hasRelatedWork W1979784219 @default.
- W3208793219 hasRelatedWork W2045956890 @default.
- W3208793219 hasRelatedWork W2067341816 @default.
- W3208793219 hasRelatedWork W2074004970 @default.
- W3208793219 hasRelatedWork W2351859806 @default.
- W3208793219 hasRelatedWork W2613209927 @default.
- W3208793219 hasRelatedWork W3171339767 @default.
- W3208793219 hasRelatedWork W4255213289 @default.
- W3208793219 hasRelatedWork W2126547731 @default.
- W3208793219 hasVolume "167" @default.
- W3208793219 isParatext "false" @default.
- W3208793219 isRetracted "false" @default.
- W3208793219 magId "3208793219" @default.
- W3208793219 workType "article" @default.