Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208830075> ?p ?o ?g. }
- W3208830075 endingPage "3954" @default.
- W3208830075 startingPage "3942" @default.
- W3208830075 abstract "Edge computing is emerging to empower the future of Internet of Things (IoT) applications. However, due to heterogeneity of applications, it is a significant challenge for the edge cloud to effectively allocate multidimensional limited resources (CPU, memory, storage, bandwidth, etc.) with constraints of applications’ Quality of Service (QoS) requirements. In this paper, we address the resource allocation problem in Edge-IoT systems through developing a novel framework named <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>DeepEdge</i> that allocates resources to the heterogeneous IoT applications with the goal of maximizing users’ Quality of Experience (QoE). To achieve this goal, we develop a novel QoE model that considers aligning the heterogeneous requirements of IoT applications to the available edge resources. The alignment is achieved through selection of QoS requirement range that can be satisfied by the available resources. In addition, we propose a novel two-stage deep reinforcement learning (DRL) scheme that effectively allocates edge resources to serve the IoT applications and maximize the users’ QoE. Unlike the typical DRL, our scheme exploits deep neural networks (DNN) to improve actions’ exploration by using DNN to map the Edge-IoT state to joint resource allocation action that consists of resource allocation and QoS class. The joint action not only maximize users’ QoE and satisfies heterogeneous applications’ requirements but also align the QoS requirements to the available resources. In addition, we develop a Q-value approximation approach to tackle the large space problem of Edge-IoT. Further evaluation shows that <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>DeepEdge</i> brings considerable improvements in terms of QoE, latency and application tasks’ success ratio in comparison to the existing resource allocation schemes." @default.
- W3208830075 created "2021-11-08" @default.
- W3208830075 creator A5010567079 @default.
- W3208830075 creator A5015463215 @default.
- W3208830075 date "2021-12-01" @default.
- W3208830075 modified "2023-10-17" @default.
- W3208830075 title "DeepEdge: A New QoE-Based Resource Allocation Framework Using Deep Reinforcement Learning for Future Heterogeneous Edge-IoT Applications" @default.
- W3208830075 cites W1551426553 @default.
- W3208830075 cites W1904504745 @default.
- W3208830075 cites W1923298278 @default.
- W3208830075 cites W1972536204 @default.
- W3208830075 cites W2088171019 @default.
- W3208830075 cites W2114623221 @default.
- W3208830075 cites W2132068839 @default.
- W3208830075 cites W2145339207 @default.
- W3208830075 cites W2195423816 @default.
- W3208830075 cites W2319129588 @default.
- W3208830075 cites W2333762543 @default.
- W3208830075 cites W2416799949 @default.
- W3208830075 cites W2482293012 @default.
- W3208830075 cites W2574473771 @default.
- W3208830075 cites W2578151840 @default.
- W3208830075 cites W2605281241 @default.
- W3208830075 cites W2766401293 @default.
- W3208830075 cites W2773498880 @default.
- W3208830075 cites W2782913205 @default.
- W3208830075 cites W2792810743 @default.
- W3208830075 cites W2808381205 @default.
- W3208830075 cites W2896079731 @default.
- W3208830075 cites W2898155611 @default.
- W3208830075 cites W2898652425 @default.
- W3208830075 cites W2907364096 @default.
- W3208830075 cites W2918400102 @default.
- W3208830075 cites W2920054549 @default.
- W3208830075 cites W2945235903 @default.
- W3208830075 cites W2945834336 @default.
- W3208830075 cites W2947829929 @default.
- W3208830075 cites W2949795388 @default.
- W3208830075 cites W2956490995 @default.
- W3208830075 cites W2962856838 @default.
- W3208830075 cites W2964050982 @default.
- W3208830075 cites W2968424451 @default.
- W3208830075 cites W2980360843 @default.
- W3208830075 cites W2981618170 @default.
- W3208830075 cites W2982507805 @default.
- W3208830075 cites W2998498679 @default.
- W3208830075 cites W3009066041 @default.
- W3208830075 cites W3010301175 @default.
- W3208830075 cites W3013810395 @default.
- W3208830075 cites W3015366655 @default.
- W3208830075 cites W3035788210 @default.
- W3208830075 cites W3045259134 @default.
- W3208830075 cites W32403112 @default.
- W3208830075 cites W4214717370 @default.
- W3208830075 doi "https://doi.org/10.1109/tnsm.2021.3123959" @default.
- W3208830075 hasPublicationYear "2021" @default.
- W3208830075 type Work @default.
- W3208830075 sameAs 3208830075 @default.
- W3208830075 citedByCount "11" @default.
- W3208830075 countsByYear W32088300752022 @default.
- W3208830075 countsByYear W32088300752023 @default.
- W3208830075 crossrefType "journal-article" @default.
- W3208830075 hasAuthorship W3208830075A5010567079 @default.
- W3208830075 hasAuthorship W3208830075A5015463215 @default.
- W3208830075 hasConcept C111919701 @default.
- W3208830075 hasConcept C120314980 @default.
- W3208830075 hasConcept C138236772 @default.
- W3208830075 hasConcept C154945302 @default.
- W3208830075 hasConcept C162307627 @default.
- W3208830075 hasConcept C2778456923 @default.
- W3208830075 hasConcept C2779333187 @default.
- W3208830075 hasConcept C29202148 @default.
- W3208830075 hasConcept C31258907 @default.
- W3208830075 hasConcept C41008148 @default.
- W3208830075 hasConcept C5119721 @default.
- W3208830075 hasConcept C79974875 @default.
- W3208830075 hasConcept C97541855 @default.
- W3208830075 hasConceptScore W3208830075C111919701 @default.
- W3208830075 hasConceptScore W3208830075C120314980 @default.
- W3208830075 hasConceptScore W3208830075C138236772 @default.
- W3208830075 hasConceptScore W3208830075C154945302 @default.
- W3208830075 hasConceptScore W3208830075C162307627 @default.
- W3208830075 hasConceptScore W3208830075C2778456923 @default.
- W3208830075 hasConceptScore W3208830075C2779333187 @default.
- W3208830075 hasConceptScore W3208830075C29202148 @default.
- W3208830075 hasConceptScore W3208830075C31258907 @default.
- W3208830075 hasConceptScore W3208830075C41008148 @default.
- W3208830075 hasConceptScore W3208830075C5119721 @default.
- W3208830075 hasConceptScore W3208830075C79974875 @default.
- W3208830075 hasConceptScore W3208830075C97541855 @default.
- W3208830075 hasFunder F4320306076 @default.
- W3208830075 hasIssue "4" @default.
- W3208830075 hasLocation W32088300751 @default.
- W3208830075 hasOpenAccess W3208830075 @default.
- W3208830075 hasPrimaryLocation W32088300751 @default.
- W3208830075 hasRelatedWork W3111395152 @default.
- W3208830075 hasRelatedWork W3216099748 @default.
- W3208830075 hasRelatedWork W4205963435 @default.