Matches in SemOpenAlex for { <https://semopenalex.org/work/W3209553585> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3209553585 endingPage "1029" @default.
- W3209553585 startingPage "1014" @default.
- W3209553585 abstract "A 1965 problem due to Ludwig Danzer asks whether there exists a set in Euclidean space with finite density intersecting any convex body of volume 1. A recent approach to this problem is concerned with the construction of dense forests and is obtained by a suitable weakening of the volume constraint. A dense forest is a discrete point set of finite density getting uniformly close to long enough line segments. The distribution of points in a dense forest is then quantified in terms of a visibility function. Another way to weaken the assumptions in Danzer's problem is by relaxing the density constraint. In this respect, a new concept is introduced in this paper, namely that of an optical forest. An optical forest in R d $mathbb {R}^{d}$ is a point set with optimal visibility but not necessarily with finite density. In the literature, the best constructions of Danzer sets and dense forests are not deterministic. The goal of this paper is to provide deterministic constructions of dense and optical forests which yield the best known results in any dimension d ⩾ 2 $d geqslant 2$ in terms of visibility and density bounds, respectively. Namely, there are three main results in this work: (1) the construction of a dense forest with the best known visibility bound which, furthermore, enjoys the property of being deterministic; (2) the deterministic construction of an optical forest with a density failing to be finite only up to a logarithm and (3) the construction of a planar Peres-type forest (that is, a dense forest obtained from a construction due to Peres) with the best known visibility bound. This is achieved by constructing a deterministic digital sequence satisfying strong dispersion properties." @default.
- W3209553585 created "2021-11-08" @default.
- W3209553585 creator A5028583758 @default.
- W3209553585 date "2022-07-20" @default.
- W3209553585 modified "2023-10-01" @default.
- W3209553585 title "Danzer's problem, effective constructions of dense forests and digital sequences" @default.
- W3209553585 cites W2023340195 @default.
- W3209553585 cites W2027310210 @default.
- W3209553585 cites W2038588771 @default.
- W3209553585 cites W2054459484 @default.
- W3209553585 cites W2319743870 @default.
- W3209553585 cites W2762039230 @default.
- W3209553585 cites W2794259272 @default.
- W3209553585 cites W2962739216 @default.
- W3209553585 cites W2963349195 @default.
- W3209553585 cites W4210823674 @default.
- W3209553585 cites W4212933304 @default.
- W3209553585 cites W4220696821 @default.
- W3209553585 doi "https://doi.org/10.1112/mtk.12153" @default.
- W3209553585 hasPublicationYear "2022" @default.
- W3209553585 type Work @default.
- W3209553585 sameAs 3209553585 @default.
- W3209553585 citedByCount "1" @default.
- W3209553585 countsByYear W32095535852023 @default.
- W3209553585 crossrefType "journal-article" @default.
- W3209553585 hasAuthorship W3209553585A5028583758 @default.
- W3209553585 hasBestOaLocation W32095535852 @default.
- W3209553585 hasConcept C114614502 @default.
- W3209553585 hasConcept C118615104 @default.
- W3209553585 hasConcept C123403432 @default.
- W3209553585 hasConcept C134306372 @default.
- W3209553585 hasConcept C14036430 @default.
- W3209553585 hasConcept C153294291 @default.
- W3209553585 hasConcept C162392398 @default.
- W3209553585 hasConcept C177264268 @default.
- W3209553585 hasConcept C186450821 @default.
- W3209553585 hasConcept C199360897 @default.
- W3209553585 hasConcept C205649164 @default.
- W3209553585 hasConcept C2524010 @default.
- W3209553585 hasConcept C2776036281 @default.
- W3209553585 hasConcept C28719098 @default.
- W3209553585 hasConcept C33676613 @default.
- W3209553585 hasConcept C33923547 @default.
- W3209553585 hasConcept C41008148 @default.
- W3209553585 hasConcept C77553402 @default.
- W3209553585 hasConcept C78458016 @default.
- W3209553585 hasConcept C86803240 @default.
- W3209553585 hasConceptScore W3209553585C114614502 @default.
- W3209553585 hasConceptScore W3209553585C118615104 @default.
- W3209553585 hasConceptScore W3209553585C123403432 @default.
- W3209553585 hasConceptScore W3209553585C134306372 @default.
- W3209553585 hasConceptScore W3209553585C14036430 @default.
- W3209553585 hasConceptScore W3209553585C153294291 @default.
- W3209553585 hasConceptScore W3209553585C162392398 @default.
- W3209553585 hasConceptScore W3209553585C177264268 @default.
- W3209553585 hasConceptScore W3209553585C186450821 @default.
- W3209553585 hasConceptScore W3209553585C199360897 @default.
- W3209553585 hasConceptScore W3209553585C205649164 @default.
- W3209553585 hasConceptScore W3209553585C2524010 @default.
- W3209553585 hasConceptScore W3209553585C2776036281 @default.
- W3209553585 hasConceptScore W3209553585C28719098 @default.
- W3209553585 hasConceptScore W3209553585C33676613 @default.
- W3209553585 hasConceptScore W3209553585C33923547 @default.
- W3209553585 hasConceptScore W3209553585C41008148 @default.
- W3209553585 hasConceptScore W3209553585C77553402 @default.
- W3209553585 hasConceptScore W3209553585C78458016 @default.
- W3209553585 hasConceptScore W3209553585C86803240 @default.
- W3209553585 hasIssue "4" @default.
- W3209553585 hasLocation W32095535851 @default.
- W3209553585 hasLocation W32095535852 @default.
- W3209553585 hasOpenAccess W3209553585 @default.
- W3209553585 hasPrimaryLocation W32095535851 @default.
- W3209553585 hasRelatedWork W2023434610 @default.
- W3209553585 hasRelatedWork W2086723718 @default.
- W3209553585 hasRelatedWork W2129254831 @default.
- W3209553585 hasRelatedWork W2360507474 @default.
- W3209553585 hasRelatedWork W2408406337 @default.
- W3209553585 hasRelatedWork W2596944507 @default.
- W3209553585 hasRelatedWork W2947186141 @default.
- W3209553585 hasRelatedWork W3137761455 @default.
- W3209553585 hasRelatedWork W4235874751 @default.
- W3209553585 hasRelatedWork W4322832370 @default.
- W3209553585 hasVolume "68" @default.
- W3209553585 isParatext "false" @default.
- W3209553585 isRetracted "false" @default.
- W3209553585 magId "3209553585" @default.
- W3209553585 workType "article" @default.