Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200215975> ?p ?o ?g. }
- W4200215975 abstract "Standardization and normalization of continuous covariates are used to ease the interpretation of regression coefficients. Although these scaling techniques serve different purposes, they are sometimes used interchangeably or confused for one another. Therefore, the objective of this study is to demonstrate how these scaling techniques lead to different interpretations of the regression coefficient in multilevel logistic regression analyses.Area-based socioeconomic data at the census tract level were obtained from the 2015-2019 American Community Survey for creating two measures of neighborhood socioeconomic status (SES), and a hypothetical data on health condition (favorable versus unfavorable) was constructed to represent 3000 individuals living across 300 census tracts (i.e., neighborhoods). Two measures of neighborhood SES were standardized by subtracting its mean and dividing by its standard deviation (SD) or by dividing by its interquartile range (IQR), and were normalized into a range between 0 and 1. Then, four separate multilevel logistic regression analyses were conducted to assess the association between neighborhood SES and health condition.Based on standardized measures, the odds of having unfavorable health condition was roughly 1.34 times higher for a one-SD change or a one-IQR change in neighborhood SES; these reflect a health difference of individuals living in relatively high SES (relatively affluent) neighborhoods and those living in relatively low SES (relatively deprived) neighborhoods. On the other hand, when these standardized measures were replaced by its respective normalized measures, the odds of having unfavorable health condition was roughly 3.48 times higher for a full unit change in neighborhood SES; these reflect a health difference of individuals living in highest SES (most affluent) neighborhoods and those living in lowest SES (most deprived) neighborhoods.Multilevel logistic regression analyses using standardized and normalized measures of neighborhood SES lead to different interpretations of the effect of neighborhood SES on health. Since both measures are valuable in their own right, interpreting a standardized and normalized measure of neighborhood SES will allow us to gain a more rounded view of the health differences of individuals along the gradient of neighborhood SES in a certain geographic location as well as across different geographic locations." @default.
- W4200215975 created "2021-12-31" @default.
- W4200215975 creator A5016618956 @default.
- W4200215975 date "2021-12-01" @default.
- W4200215975 modified "2023-10-16" @default.
- W4200215975 title "Interpreting a standardized and normalized measure of neighborhood socioeconomic status for a better understanding of health differences" @default.
- W4200215975 cites W1486622124 @default.
- W4200215975 cites W1609810996 @default.
- W4200215975 cites W1766901775 @default.
- W4200215975 cites W1951724000 @default.
- W4200215975 cites W1965855329 @default.
- W4200215975 cites W1981457167 @default.
- W4200215975 cites W1987838173 @default.
- W4200215975 cites W2006782113 @default.
- W4200215975 cites W2012971421 @default.
- W4200215975 cites W2013836144 @default.
- W4200215975 cites W2020088653 @default.
- W4200215975 cites W2030031047 @default.
- W4200215975 cites W2030734052 @default.
- W4200215975 cites W2050491515 @default.
- W4200215975 cites W2054787086 @default.
- W4200215975 cites W2058463674 @default.
- W4200215975 cites W2064799866 @default.
- W4200215975 cites W2065092657 @default.
- W4200215975 cites W2069309526 @default.
- W4200215975 cites W2083526990 @default.
- W4200215975 cites W2095615036 @default.
- W4200215975 cites W2097097734 @default.
- W4200215975 cites W2098547359 @default.
- W4200215975 cites W2099737847 @default.
- W4200215975 cites W2103386360 @default.
- W4200215975 cites W2104401484 @default.
- W4200215975 cites W2108096958 @default.
- W4200215975 cites W2110066529 @default.
- W4200215975 cites W2114291357 @default.
- W4200215975 cites W2119217392 @default.
- W4200215975 cites W2124447561 @default.
- W4200215975 cites W2135691777 @default.
- W4200215975 cites W2135699330 @default.
- W4200215975 cites W2141214792 @default.
- W4200215975 cites W2144759387 @default.
- W4200215975 cites W2162744183 @default.
- W4200215975 cites W2169462149 @default.
- W4200215975 cites W2169560706 @default.
- W4200215975 cites W2296754172 @default.
- W4200215975 cites W2401448516 @default.
- W4200215975 cites W2439819314 @default.
- W4200215975 cites W2890373521 @default.
- W4200215975 cites W36826027 @default.
- W4200215975 cites W4235390605 @default.
- W4200215975 cites W4241700883 @default.
- W4200215975 cites W4245050711 @default.
- W4200215975 cites W4246737797 @default.
- W4200215975 cites W4247818158 @default.
- W4200215975 doi "https://doi.org/10.1186/s13690-021-00750-w" @default.
- W4200215975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34911564" @default.
- W4200215975 hasPublicationYear "2021" @default.
- W4200215975 type Work @default.
- W4200215975 citedByCount "2" @default.
- W4200215975 countsByYear W42002159752022 @default.
- W4200215975 countsByYear W42002159752023 @default.
- W4200215975 crossrefType "journal-article" @default.
- W4200215975 hasAuthorship W4200215975A5016618956 @default.
- W4200215975 hasBestOaLocation W42002159751 @default.
- W4200215975 hasConcept C105795698 @default.
- W4200215975 hasConcept C119060515 @default.
- W4200215975 hasConcept C138816342 @default.
- W4200215975 hasConcept C143095724 @default.
- W4200215975 hasConcept C144024400 @default.
- W4200215975 hasConcept C147077947 @default.
- W4200215975 hasConcept C149923435 @default.
- W4200215975 hasConcept C151956035 @default.
- W4200215975 hasConcept C159110408 @default.
- W4200215975 hasConcept C2908647359 @default.
- W4200215975 hasConcept C33923547 @default.
- W4200215975 hasConcept C53059260 @default.
- W4200215975 hasConcept C71924100 @default.
- W4200215975 hasConcept C74909509 @default.
- W4200215975 hasConcept C99454951 @default.
- W4200215975 hasConceptScore W4200215975C105795698 @default.
- W4200215975 hasConceptScore W4200215975C119060515 @default.
- W4200215975 hasConceptScore W4200215975C138816342 @default.
- W4200215975 hasConceptScore W4200215975C143095724 @default.
- W4200215975 hasConceptScore W4200215975C144024400 @default.
- W4200215975 hasConceptScore W4200215975C147077947 @default.
- W4200215975 hasConceptScore W4200215975C149923435 @default.
- W4200215975 hasConceptScore W4200215975C151956035 @default.
- W4200215975 hasConceptScore W4200215975C159110408 @default.
- W4200215975 hasConceptScore W4200215975C2908647359 @default.
- W4200215975 hasConceptScore W4200215975C33923547 @default.
- W4200215975 hasConceptScore W4200215975C53059260 @default.
- W4200215975 hasConceptScore W4200215975C71924100 @default.
- W4200215975 hasConceptScore W4200215975C74909509 @default.
- W4200215975 hasConceptScore W4200215975C99454951 @default.
- W4200215975 hasIssue "1" @default.
- W4200215975 hasLocation W42002159751 @default.
- W4200215975 hasLocation W42002159752 @default.
- W4200215975 hasLocation W42002159753 @default.
- W4200215975 hasLocation W42002159754 @default.
- W4200215975 hasOpenAccess W4200215975 @default.