Matches in SemOpenAlex for { <https://semopenalex.org/work/W4205122356> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4205122356 endingPage "641" @default.
- W4205122356 startingPage "625" @default.
- W4205122356 abstract "Purpose The deep learning-based recommender framework (DLRF) is based on an improved long short-term memory (LSTM) structure with additional controllers; thus, it considers contextual information for state transition. It also handles irregularities in the data to enhance performance in generating recommendations while modelling short-term preferences. An algorithm named a multi-preference integrated algorithm (MPIA) is proposed to have dynamic integration of both kinds of user preferences aforementioned. Extensive experiments are made using Amazon benchmark datasets, and the results are compared with many existing recommender systems (RSs). Design/methodology/approach RSs produce quality information filtering to the users based on their preferences. In the contemporary era, online RSs-based collaborative filtering (CF) techniques are widely used to model long-term preferences of users. With deep learning models, such as recurrent neural networks (RNNs), it became viable to model short-term preferences of users. In the existing RSs, there is a lack of dynamic integration of both long- and short-term preferences. In this paper, the authors proposed a DLRF for improving the state of the art in modelling short-term preferences and generating recommendations as well. Findings The results of the empirical study revealed that the MPIA outperforms existing algorithms in terms of performance measured using metrics such as area under the curve (AUC) and F1-score. The percentage of improvement in terms AUC is observed as 1.3, 2.8, 3 and 1.9% and in terms of F-1 score 0.98, 2.91, 2 and 2.01% on the datasets. Originality/value The algorithm uses attention-based approaches to integrate the preferences by incorporating contextual information." @default.
- W4205122356 created "2022-01-25" @default.
- W4205122356 creator A5015607309 @default.
- W4205122356 creator A5033238995 @default.
- W4205122356 creator A5036604551 @default.
- W4205122356 date "2022-01-21" @default.
- W4205122356 modified "2023-10-16" @default.
- W4205122356 title "A multi-preference integrated algorithm (MPIA) for the deep learning-based recommender framework (DLRF)" @default.
- W4205122356 cites W2315503695 @default.
- W4205122356 cites W2343644403 @default.
- W4205122356 cites W2533696134 @default.
- W4205122356 cites W2558748708 @default.
- W4205122356 cites W2565516711 @default.
- W4205122356 cites W2754493004 @default.
- W4205122356 cites W2782259251 @default.
- W4205122356 cites W2803669957 @default.
- W4205122356 cites W2808573650 @default.
- W4205122356 cites W2889526258 @default.
- W4205122356 cites W2908414126 @default.
- W4205122356 cites W2909866320 @default.
- W4205122356 cites W2965898633 @default.
- W4205122356 cites W3007184303 @default.
- W4205122356 cites W3008504081 @default.
- W4205122356 cites W3032951514 @default.
- W4205122356 cites W3041488992 @default.
- W4205122356 doi "https://doi.org/10.1108/ijicc-11-2021-0257" @default.
- W4205122356 hasPublicationYear "2022" @default.
- W4205122356 type Work @default.
- W4205122356 citedByCount "2" @default.
- W4205122356 countsByYear W42051223562022 @default.
- W4205122356 countsByYear W42051223562023 @default.
- W4205122356 crossrefType "journal-article" @default.
- W4205122356 hasAuthorship W4205122356A5015607309 @default.
- W4205122356 hasAuthorship W4205122356A5033238995 @default.
- W4205122356 hasAuthorship W4205122356A5036604551 @default.
- W4205122356 hasConcept C105795698 @default.
- W4205122356 hasConcept C111919701 @default.
- W4205122356 hasConcept C119857082 @default.
- W4205122356 hasConcept C121332964 @default.
- W4205122356 hasConcept C124101348 @default.
- W4205122356 hasConcept C13280743 @default.
- W4205122356 hasConcept C154945302 @default.
- W4205122356 hasConcept C181204326 @default.
- W4205122356 hasConcept C185798385 @default.
- W4205122356 hasConcept C205649164 @default.
- W4205122356 hasConcept C21569690 @default.
- W4205122356 hasConcept C2385561 @default.
- W4205122356 hasConcept C2781249084 @default.
- W4205122356 hasConcept C33923547 @default.
- W4205122356 hasConcept C41008148 @default.
- W4205122356 hasConcept C557471498 @default.
- W4205122356 hasConcept C61797465 @default.
- W4205122356 hasConcept C62520636 @default.
- W4205122356 hasConceptScore W4205122356C105795698 @default.
- W4205122356 hasConceptScore W4205122356C111919701 @default.
- W4205122356 hasConceptScore W4205122356C119857082 @default.
- W4205122356 hasConceptScore W4205122356C121332964 @default.
- W4205122356 hasConceptScore W4205122356C124101348 @default.
- W4205122356 hasConceptScore W4205122356C13280743 @default.
- W4205122356 hasConceptScore W4205122356C154945302 @default.
- W4205122356 hasConceptScore W4205122356C181204326 @default.
- W4205122356 hasConceptScore W4205122356C185798385 @default.
- W4205122356 hasConceptScore W4205122356C205649164 @default.
- W4205122356 hasConceptScore W4205122356C21569690 @default.
- W4205122356 hasConceptScore W4205122356C2385561 @default.
- W4205122356 hasConceptScore W4205122356C2781249084 @default.
- W4205122356 hasConceptScore W4205122356C33923547 @default.
- W4205122356 hasConceptScore W4205122356C41008148 @default.
- W4205122356 hasConceptScore W4205122356C557471498 @default.
- W4205122356 hasConceptScore W4205122356C61797465 @default.
- W4205122356 hasConceptScore W4205122356C62520636 @default.
- W4205122356 hasIssue "4" @default.
- W4205122356 hasLocation W42051223561 @default.
- W4205122356 hasOpenAccess W4205122356 @default.
- W4205122356 hasPrimaryLocation W42051223561 @default.
- W4205122356 hasRelatedWork W11484169 @default.
- W4205122356 hasRelatedWork W2123524892 @default.
- W4205122356 hasRelatedWork W2486610310 @default.
- W4205122356 hasRelatedWork W2768632337 @default.
- W4205122356 hasRelatedWork W2923288043 @default.
- W4205122356 hasRelatedWork W2965170902 @default.
- W4205122356 hasRelatedWork W3095121312 @default.
- W4205122356 hasRelatedWork W3159303914 @default.
- W4205122356 hasRelatedWork W4205122356 @default.
- W4205122356 hasRelatedWork W4383346083 @default.
- W4205122356 hasVolume "15" @default.
- W4205122356 isParatext "false" @default.
- W4205122356 isRetracted "false" @default.
- W4205122356 workType "article" @default.