Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221015344> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4221015344 endingPage "677" @default.
- W4221015344 startingPage "668" @default.
- W4221015344 abstract "Perfect dispatch refers to finding the after-the-fact optimal allocation of output power among generating units based on actual loads. This paper proposes a new idea to solve the economic dispatch problem that regards it as a learning problem, not an optimal problem. The adaptive Gate Recurrent Unit (GRU) neural network is applied to construct the perfect dispatch learning model, which makes the perfect dispatch from an offline manual analysis method to an automatic online learning method. The hierarchical clustering analysis is performed to determine historical similar days for forecast day. Then the historical days that have the same load characteristic with the forecast day form the training set for the GRU learning model. The matrix correlation analysis is performed to select critical historical instants for each dispatch instant. According to matrix correlation analysis results, the number of the memory blocks in each GRU learning model is determined. The structure of GRU learning models is adaptive for different dispatch instants. The IEEE 39-bus test system is used to verify the feasibility and accuracy of the proposed perfect dispatch learning model. Study results indicate that the generation dispatch schedule obtained by the proposed GRU learning model is closer to the perfect dispatch schedule than the generation dispatch schedule obtained by solving the non-linear optimization problem." @default.
- W4221015344 created "2022-04-03" @default.
- W4221015344 creator A5048167728 @default.
- W4221015344 creator A5070644871 @default.
- W4221015344 creator A5082946130 @default.
- W4221015344 date "2022-08-01" @default.
- W4221015344 modified "2023-10-18" @default.
- W4221015344 title "Construction of perfect dispatch learning model based on adaptive GRU" @default.
- W4221015344 cites W2023870905 @default.
- W4221015344 cites W2053580177 @default.
- W4221015344 cites W2155304520 @default.
- W4221015344 cites W2347070022 @default.
- W4221015344 cites W2508073929 @default.
- W4221015344 cites W2542977345 @default.
- W4221015344 cites W2589632829 @default.
- W4221015344 cites W2590657229 @default.
- W4221015344 cites W2918241821 @default.
- W4221015344 cites W2921986534 @default.
- W4221015344 cites W2952204788 @default.
- W4221015344 cites W2998471178 @default.
- W4221015344 doi "https://doi.org/10.1016/j.egyr.2022.02.250" @default.
- W4221015344 hasPublicationYear "2022" @default.
- W4221015344 type Work @default.
- W4221015344 citedByCount "4" @default.
- W4221015344 countsByYear W42210153442022 @default.
- W4221015344 countsByYear W42210153442023 @default.
- W4221015344 crossrefType "journal-article" @default.
- W4221015344 hasAuthorship W4221015344A5048167728 @default.
- W4221015344 hasAuthorship W4221015344A5070644871 @default.
- W4221015344 hasAuthorship W4221015344A5082946130 @default.
- W4221015344 hasBestOaLocation W42210153441 @default.
- W4221015344 hasConcept C111919701 @default.
- W4221015344 hasConcept C121332964 @default.
- W4221015344 hasConcept C126255220 @default.
- W4221015344 hasConcept C154945302 @default.
- W4221015344 hasConcept C163258240 @default.
- W4221015344 hasConcept C187633118 @default.
- W4221015344 hasConcept C2780992000 @default.
- W4221015344 hasConcept C33923547 @default.
- W4221015344 hasConcept C41008148 @default.
- W4221015344 hasConcept C50644808 @default.
- W4221015344 hasConcept C62520636 @default.
- W4221015344 hasConcept C68387754 @default.
- W4221015344 hasConcept C73555534 @default.
- W4221015344 hasConcept C89227174 @default.
- W4221015344 hasConceptScore W4221015344C111919701 @default.
- W4221015344 hasConceptScore W4221015344C121332964 @default.
- W4221015344 hasConceptScore W4221015344C126255220 @default.
- W4221015344 hasConceptScore W4221015344C154945302 @default.
- W4221015344 hasConceptScore W4221015344C163258240 @default.
- W4221015344 hasConceptScore W4221015344C187633118 @default.
- W4221015344 hasConceptScore W4221015344C2780992000 @default.
- W4221015344 hasConceptScore W4221015344C33923547 @default.
- W4221015344 hasConceptScore W4221015344C41008148 @default.
- W4221015344 hasConceptScore W4221015344C50644808 @default.
- W4221015344 hasConceptScore W4221015344C62520636 @default.
- W4221015344 hasConceptScore W4221015344C68387754 @default.
- W4221015344 hasConceptScore W4221015344C73555534 @default.
- W4221015344 hasConceptScore W4221015344C89227174 @default.
- W4221015344 hasLocation W42210153441 @default.
- W4221015344 hasLocation W42210153442 @default.
- W4221015344 hasOpenAccess W4221015344 @default.
- W4221015344 hasPrimaryLocation W42210153441 @default.
- W4221015344 hasRelatedWork W1971192845 @default.
- W4221015344 hasRelatedWork W1971415828 @default.
- W4221015344 hasRelatedWork W1996779666 @default.
- W4221015344 hasRelatedWork W2035820076 @default.
- W4221015344 hasRelatedWork W2535004281 @default.
- W4221015344 hasRelatedWork W2773527693 @default.
- W4221015344 hasRelatedWork W3187442254 @default.
- W4221015344 hasRelatedWork W4249975064 @default.
- W4221015344 hasRelatedWork W200270196 @default.
- W4221015344 hasRelatedWork W2478135260 @default.
- W4221015344 hasVolume "8" @default.
- W4221015344 isParatext "false" @default.
- W4221015344 isRetracted "false" @default.
- W4221015344 workType "article" @default.