Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221149319> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4221149319 abstract "Physical systems are usually modeled by differential equations, but solving these differential equations analytically is often intractable. Instead, the differential equations can be solved numerically by discretization in a finite computational domain. The discretized equation is reduced to a large linear system, whose solution is typically found using an iterative solver. We start with an initial guess, $x_0$, and iterate the algorithm to obtain a sequence of solution vectors, x_m. The iterative algorithm is said to converge to the exact solution x of the linear system if and only if x_m converges to x. It is important that we formally guarantee the convergence of iterative algorithm, since these algorithms are used in simulations for design of safety critical systems such as airplanes, cars, or nuclear power plants. In this paper, we first formalize the necessary and sufficient conditions for iterative convergence in the Coq proof assistant. We then extend this result to two classical iterative methods: Gauss-Seidel iteration and Jacobi iteration. We formalize conditions for the convergence of the Gauss--Seidel classical iterative method, based on positive definiteness of the iterative matrix. We then use these conditions and the main proof of iterative convergence to prove convergence of the Gauss-Seidel method. We also apply the main theorem of iterative convergence on an example of the Jacobi classical iterative method to prove its convergence. We leverage recent developments of the Coq linear algebra, Coquelicot's real analysis library and the mathcomp library for our formalization." @default.
- W4221149319 created "2022-04-03" @default.
- W4221149319 creator A5002069299 @default.
- W4221149319 creator A5070988471 @default.
- W4221149319 creator A5076480110 @default.
- W4221149319 date "2022-02-11" @default.
- W4221149319 modified "2023-10-01" @default.
- W4221149319 title "Formal verification of iterative convergence of numerical algorithms" @default.
- W4221149319 doi "https://doi.org/10.48550/arxiv.2202.05587" @default.
- W4221149319 hasPublicationYear "2022" @default.
- W4221149319 type Work @default.
- W4221149319 citedByCount "1" @default.
- W4221149319 countsByYear W42211493192023 @default.
- W4221149319 crossrefType "posted-content" @default.
- W4221149319 hasAuthorship W4221149319A5002069299 @default.
- W4221149319 hasAuthorship W4221149319A5070988471 @default.
- W4221149319 hasAuthorship W4221149319A5076480110 @default.
- W4221149319 hasBestOaLocation W42211493191 @default.
- W4221149319 hasConcept C11413529 @default.
- W4221149319 hasConcept C117898588 @default.
- W4221149319 hasConcept C126255220 @default.
- W4221149319 hasConcept C127042158 @default.
- W4221149319 hasConcept C134306372 @default.
- W4221149319 hasConcept C159694833 @default.
- W4221149319 hasConcept C162324750 @default.
- W4221149319 hasConcept C2777303404 @default.
- W4221149319 hasConcept C2778112365 @default.
- W4221149319 hasConcept C2778770139 @default.
- W4221149319 hasConcept C28826006 @default.
- W4221149319 hasConcept C33923547 @default.
- W4221149319 hasConcept C3828260 @default.
- W4221149319 hasConcept C41008148 @default.
- W4221149319 hasConcept C50522688 @default.
- W4221149319 hasConcept C54355233 @default.
- W4221149319 hasConcept C67923128 @default.
- W4221149319 hasConcept C73000952 @default.
- W4221149319 hasConcept C86803240 @default.
- W4221149319 hasConceptScore W4221149319C11413529 @default.
- W4221149319 hasConceptScore W4221149319C117898588 @default.
- W4221149319 hasConceptScore W4221149319C126255220 @default.
- W4221149319 hasConceptScore W4221149319C127042158 @default.
- W4221149319 hasConceptScore W4221149319C134306372 @default.
- W4221149319 hasConceptScore W4221149319C159694833 @default.
- W4221149319 hasConceptScore W4221149319C162324750 @default.
- W4221149319 hasConceptScore W4221149319C2777303404 @default.
- W4221149319 hasConceptScore W4221149319C2778112365 @default.
- W4221149319 hasConceptScore W4221149319C2778770139 @default.
- W4221149319 hasConceptScore W4221149319C28826006 @default.
- W4221149319 hasConceptScore W4221149319C33923547 @default.
- W4221149319 hasConceptScore W4221149319C3828260 @default.
- W4221149319 hasConceptScore W4221149319C41008148 @default.
- W4221149319 hasConceptScore W4221149319C50522688 @default.
- W4221149319 hasConceptScore W4221149319C54355233 @default.
- W4221149319 hasConceptScore W4221149319C67923128 @default.
- W4221149319 hasConceptScore W4221149319C73000952 @default.
- W4221149319 hasConceptScore W4221149319C86803240 @default.
- W4221149319 hasLocation W42211493191 @default.
- W4221149319 hasOpenAccess W4221149319 @default.
- W4221149319 hasPrimaryLocation W42211493191 @default.
- W4221149319 hasRelatedWork W185474988 @default.
- W4221149319 hasRelatedWork W2112452310 @default.
- W4221149319 hasRelatedWork W2281025351 @default.
- W4221149319 hasRelatedWork W2358921742 @default.
- W4221149319 hasRelatedWork W2433204144 @default.
- W4221149319 hasRelatedWork W2794339961 @default.
- W4221149319 hasRelatedWork W2968546177 @default.
- W4221149319 hasRelatedWork W3119667263 @default.
- W4221149319 hasRelatedWork W73921606 @default.
- W4221149319 hasRelatedWork W2889431757 @default.
- W4221149319 isParatext "false" @default.
- W4221149319 isRetracted "false" @default.
- W4221149319 workType "article" @default.