Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224275870> ?p ?o ?g. }
- W4224275870 endingPage "848" @default.
- W4224275870 startingPage "829" @default.
- W4224275870 abstract "This paper presents a machine learning approach for classification of arsenic (As) levels as safe and unsafe in groundwater samples collected from the Indo-Gangetic region. As water is essential for sustaining life, heavy metals like arsenic pose a public health concern. In this study, various tree-based machine learning models namely Random Forest, Optimized Forest, CS Forest, SPAARC, and REP Tree algorithms have been applied to classify water samples. As per the guidelines of the World Health Organization (WHO), the arsenic concentration in water should not exceed 10 μg/L. The groundwater quality parameter was ranked using a classifier attribute evaluator for training and testing the models. Parameters obtained from the confusion matrix, such as accuracy, precision, recall, and FPR, were used to analyze the performance of models. Among all models, Optimized Forest outperforms other classifier as it has a high accuracy of 80.64%, a precision of 80.70%, recall of 97.87%, and a low FPR of 73.33%. The Optimized Forest model can be used to test new water samples for classification of arsenic in groundwater samples." @default.
- W4224275870 created "2022-04-26" @default.
- W4224275870 creator A5009951857 @default.
- W4224275870 creator A5088545260 @default.
- W4224275870 date "2022-04-21" @default.
- W4224275870 modified "2023-10-14" @default.
- W4224275870 title "Assessment of groundwater arsenic contamination using machine learning in Varanasi, Uttar Pradesh, India" @default.
- W4224275870 cites W1648786085 @default.
- W4224275870 cites W1966403570 @default.
- W4224275870 cites W1968397361 @default.
- W4224275870 cites W1969829902 @default.
- W4224275870 cites W1975108808 @default.
- W4224275870 cites W1978895830 @default.
- W4224275870 cites W1980546293 @default.
- W4224275870 cites W1987336797 @default.
- W4224275870 cites W1992744908 @default.
- W4224275870 cites W1994536013 @default.
- W4224275870 cites W2003221509 @default.
- W4224275870 cites W2010147462 @default.
- W4224275870 cites W2012555274 @default.
- W4224275870 cites W2026356283 @default.
- W4224275870 cites W2028153214 @default.
- W4224275870 cites W2029764395 @default.
- W4224275870 cites W2038219981 @default.
- W4224275870 cites W2047069802 @default.
- W4224275870 cites W2048934765 @default.
- W4224275870 cites W2050059289 @default.
- W4224275870 cites W2051203218 @default.
- W4224275870 cites W2058079588 @default.
- W4224275870 cites W2067578189 @default.
- W4224275870 cites W2082382183 @default.
- W4224275870 cites W2083505941 @default.
- W4224275870 cites W2085070141 @default.
- W4224275870 cites W2085281262 @default.
- W4224275870 cites W2086184041 @default.
- W4224275870 cites W2096849731 @default.
- W4224275870 cites W2111701342 @default.
- W4224275870 cites W2134399324 @default.
- W4224275870 cites W2143419300 @default.
- W4224275870 cites W2143534022 @default.
- W4224275870 cites W2149602337 @default.
- W4224275870 cites W2150777971 @default.
- W4224275870 cites W2217221440 @default.
- W4224275870 cites W2268758953 @default.
- W4224275870 cites W2472100207 @default.
- W4224275870 cites W2521493102 @default.
- W4224275870 cites W2606837565 @default.
- W4224275870 cites W2619033858 @default.
- W4224275870 cites W2741523325 @default.
- W4224275870 cites W2753332146 @default.
- W4224275870 cites W2786790675 @default.
- W4224275870 cites W2902220643 @default.
- W4224275870 cites W2911964244 @default.
- W4224275870 cites W2943171126 @default.
- W4224275870 cites W2946670022 @default.
- W4224275870 cites W2952647652 @default.
- W4224275870 cites W2969652156 @default.
- W4224275870 cites W2979730503 @default.
- W4224275870 cites W2999243632 @default.
- W4224275870 cites W3007411357 @default.
- W4224275870 cites W3028066085 @default.
- W4224275870 cites W3044661808 @default.
- W4224275870 cites W3044853528 @default.
- W4224275870 cites W3138153383 @default.
- W4224275870 cites W3217683179 @default.
- W4224275870 cites W36781903 @default.
- W4224275870 cites W4205879692 @default.
- W4224275870 doi "https://doi.org/10.2166/wh.2022.015" @default.
- W4224275870 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35635776" @default.
- W4224275870 hasPublicationYear "2022" @default.
- W4224275870 type Work @default.
- W4224275870 citedByCount "8" @default.
- W4224275870 countsByYear W42242758702022 @default.
- W4224275870 countsByYear W42242758702023 @default.
- W4224275870 crossrefType "journal-article" @default.
- W4224275870 hasAuthorship W4224275870A5009951857 @default.
- W4224275870 hasAuthorship W4224275870A5088545260 @default.
- W4224275870 hasBestOaLocation W42242758701 @default.
- W4224275870 hasConcept C11171543 @default.
- W4224275870 hasConcept C112570922 @default.
- W4224275870 hasConcept C119857082 @default.
- W4224275870 hasConcept C127413603 @default.
- W4224275870 hasConcept C132165134 @default.
- W4224275870 hasConcept C138602881 @default.
- W4224275870 hasConcept C144024400 @default.
- W4224275870 hasConcept C15744967 @default.
- W4224275870 hasConcept C169258074 @default.
- W4224275870 hasConcept C178790620 @default.
- W4224275870 hasConcept C185592680 @default.
- W4224275870 hasConcept C187320778 @default.
- W4224275870 hasConcept C18903297 @default.
- W4224275870 hasConcept C2780797713 @default.
- W4224275870 hasConcept C2781140086 @default.
- W4224275870 hasConcept C3018581295 @default.
- W4224275870 hasConcept C39432304 @default.
- W4224275870 hasConcept C41008148 @default.
- W4224275870 hasConcept C45355965 @default.
- W4224275870 hasConcept C502230775 @default.