Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224315067> ?p ?o ?g. }
- W4224315067 endingPage "2825" @default.
- W4224315067 startingPage "2825" @default.
- W4224315067 abstract "Human gait analysis is a standard method used for detecting and diagnosing diseases associated with gait disorders. Wearable technologies, due to their low costs and high portability, are increasingly being used in gait and other medical analyses. This paper evaluates the use of low-cost homemade textile pressure sensors to recognize gait phases. Ten sensors were integrated into stretch pants, achieving an inexpensive and pervasive solution. Nevertheless, such a simple fabrication process leads to significant sensitivity variability among sensors, hindering their adoption in precision-demanding medical applications. To tackle this issue, we evaluated the textile sensors for the classification of gait phases over three machine learning algorithms for time-series signals, namely, random forest (RF), time series forest (TSF), and multi-representation sequence learner (Mr-SEQL). Training and testing signals were generated from participants wearing the sensing pants in a test run under laboratory conditions and from an inertial sensor attached to the same pants for comparison purposes. Moreover, a new annotation method to facilitate the creation of such datasets using an ordinary webcam and a pose detection model is presented, which uses predefined rules for label generation. The results show that textile sensors successfully detect the gait phases with an average precision of 91.2% and 90.5% for RF and TSF, respectively, only 0.8% and 2.3% lower than the same values obtained from the IMU. This situation changes for Mr-SEQL, which achieved a precision of 79% for the textile sensors and 36.8% for the IMU. The overall results show the feasibility of using textile pressure sensors for human gait recognition." @default.
- W4224315067 created "2022-04-26" @default.
- W4224315067 creator A5007564960 @default.
- W4224315067 creator A5009551569 @default.
- W4224315067 creator A5010179903 @default.
- W4224315067 creator A5011087816 @default.
- W4224315067 creator A5011478558 @default.
- W4224315067 creator A5086385154 @default.
- W4224315067 date "2022-04-07" @default.
- W4224315067 modified "2023-10-18" @default.
- W4224315067 title "Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach" @default.
- W4224315067 cites W161659029 @default.
- W4224315067 cites W1823431077 @default.
- W4224315067 cites W1970493599 @default.
- W4224315067 cites W2044306384 @default.
- W4224315067 cites W2055450809 @default.
- W4224315067 cites W2068336169 @default.
- W4224315067 cites W2082599638 @default.
- W4224315067 cites W2126498322 @default.
- W4224315067 cites W2158764002 @default.
- W4224315067 cites W2166547175 @default.
- W4224315067 cites W2308325322 @default.
- W4224315067 cites W2520949346 @default.
- W4224315067 cites W2531169641 @default.
- W4224315067 cites W2560253279 @default.
- W4224315067 cites W2754066774 @default.
- W4224315067 cites W2766525762 @default.
- W4224315067 cites W2766552657 @default.
- W4224315067 cites W2797058371 @default.
- W4224315067 cites W2802314367 @default.
- W4224315067 cites W2803065455 @default.
- W4224315067 cites W2896657888 @default.
- W4224315067 cites W2908447216 @default.
- W4224315067 cites W2908977667 @default.
- W4224315067 cites W2913036154 @default.
- W4224315067 cites W2917989266 @default.
- W4224315067 cites W2946507061 @default.
- W4224315067 cites W2985327177 @default.
- W4224315067 cites W2990762148 @default.
- W4224315067 cites W3001172962 @default.
- W4224315067 cites W3099388394 @default.
- W4224315067 cites W3115948762 @default.
- W4224315067 cites W3173714361 @default.
- W4224315067 cites W3198815362 @default.
- W4224315067 cites W4243385754 @default.
- W4224315067 doi "https://doi.org/10.3390/s22082825" @default.
- W4224315067 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35458810" @default.
- W4224315067 hasPublicationYear "2022" @default.
- W4224315067 type Work @default.
- W4224315067 citedByCount "1" @default.
- W4224315067 countsByYear W42243150672023 @default.
- W4224315067 crossrefType "journal-article" @default.
- W4224315067 hasAuthorship W4224315067A5007564960 @default.
- W4224315067 hasAuthorship W4224315067A5009551569 @default.
- W4224315067 hasAuthorship W4224315067A5010179903 @default.
- W4224315067 hasAuthorship W4224315067A5011087816 @default.
- W4224315067 hasAuthorship W4224315067A5011478558 @default.
- W4224315067 hasAuthorship W4224315067A5086385154 @default.
- W4224315067 hasBestOaLocation W42243150671 @default.
- W4224315067 hasConcept C111919701 @default.
- W4224315067 hasConcept C127413603 @default.
- W4224315067 hasConcept C149635348 @default.
- W4224315067 hasConcept C150594956 @default.
- W4224315067 hasConcept C151800584 @default.
- W4224315067 hasConcept C154945302 @default.
- W4224315067 hasConcept C164767435 @default.
- W4224315067 hasConcept C166957645 @default.
- W4224315067 hasConcept C169258074 @default.
- W4224315067 hasConcept C173906292 @default.
- W4224315067 hasConcept C199360897 @default.
- W4224315067 hasConcept C31972630 @default.
- W4224315067 hasConcept C41008148 @default.
- W4224315067 hasConcept C41325743 @default.
- W4224315067 hasConcept C44154836 @default.
- W4224315067 hasConcept C54290928 @default.
- W4224315067 hasConcept C63000827 @default.
- W4224315067 hasConcept C71924100 @default.
- W4224315067 hasConcept C78519656 @default.
- W4224315067 hasConcept C79061980 @default.
- W4224315067 hasConcept C79403827 @default.
- W4224315067 hasConcept C95457728 @default.
- W4224315067 hasConcept C98045186 @default.
- W4224315067 hasConcept C99508421 @default.
- W4224315067 hasConceptScore W4224315067C111919701 @default.
- W4224315067 hasConceptScore W4224315067C127413603 @default.
- W4224315067 hasConceptScore W4224315067C149635348 @default.
- W4224315067 hasConceptScore W4224315067C150594956 @default.
- W4224315067 hasConceptScore W4224315067C151800584 @default.
- W4224315067 hasConceptScore W4224315067C154945302 @default.
- W4224315067 hasConceptScore W4224315067C164767435 @default.
- W4224315067 hasConceptScore W4224315067C166957645 @default.
- W4224315067 hasConceptScore W4224315067C169258074 @default.
- W4224315067 hasConceptScore W4224315067C173906292 @default.
- W4224315067 hasConceptScore W4224315067C199360897 @default.
- W4224315067 hasConceptScore W4224315067C31972630 @default.
- W4224315067 hasConceptScore W4224315067C41008148 @default.
- W4224315067 hasConceptScore W4224315067C41325743 @default.
- W4224315067 hasConceptScore W4224315067C44154836 @default.