Matches in SemOpenAlex for { <https://semopenalex.org/work/W4254314104> ?p ?o ?g. }
- W4254314104 endingPage "33" @default.
- W4254314104 startingPage "12" @default.
- W4254314104 abstract "Gene Therapy: Technologies & Applications Immunogene therapyJohn NemunaitisJohn NemunaitisJohn Nemunaitis is Executive Medical Director of Mary Crowley Cancer Research Centers (TX, USA). He has been exploring novel targeted therapies for treating cancer patients for over 20 years. His research focus is clinical in orientation and involves determination of molecular signals in order to optimize targeted therapy, development of RNAi-based therapeutics and cancer vaccine approaches.Search for more papers by this authorPublished Online:13 Mar 2013https://doi.org/10.2217/ebo.12.299AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInRedditEmail View chapterAbstract: The concept of immunogene therapy has dramatically advanced from initial testing in limited animal models, to large-scale, multiple Phase III trial clinical assessments. Moreover, the list of potential ‘immunosensitive’ malignancies, for many years previously thought to be limited to renal cell carcinoma, melanoma and possibly bladder cancer if one accepts local regional immunosensitivity to BCG, has expanded to include prostate cancer with the recent approval of Provenge® (Dendreon Corp., WA, USA), and as pointed out in this chapter, possibly non-small-cell lung cancer (NSCLC). Over the last 20 years, dozens of immunogenic approaches (those that involve DNA transfer) have been explored in clinical trials involving a variety of solid tumors. Interestingly, particular development has been observed in NSCLC. In order to review principles, rationale and up-to-date clinical advances, this chapter will focus on the microcosm of immunogene therapy in NSCLC, highlighting examples of development of this technology outside of NSCLC. References1 Kakimi K , Nakajima J , Wada H . Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer . Lung Cancer 65 (1) , 1 – 8 (2009) . Crossref, Medline, Google Scholar2 Chaturvedi AK , Pfeiffer RM , Chang L , Goedert JJ , Biggar RJ , Engels EA . Elevated risk of lung cancer among people with AIDS . AIDS 21 (2) , 207 – 213 (2007) . Crossref, Medline, Google Scholar3 Yoshino I , Yano T , Murata M et al. Tumor-reactive T-cells accumulate in lung cancer tissues but fail to respond due to tumor cell-derived factor . Cancer Res. 52 (4) , 775 – 781 (1992) . Medline, CAS, Google Scholar4 McCracken JD , Chen T , White J et al. Combination chemotherapy, radiotherapy, and BCG immunotherapy in limited small-cell carcinoma of the lung: a Southwest Oncology Group Study . Cancer 49 (11) , 2252 – 2258 (1982) . Crossref, Medline, CAS, Google Scholar5 Matthay RA , Mahler DA , Beck GJ et al. Intratumoral bacillus Calmette–Guerin immunotherapy prior to surgery for carcinoma of the lung: results of a prospective randomized trial . Cancer Res. 46 (11) , 5963 – 5968 (1986) . Medline, CAS, Google Scholar6 Gilboa E , Nair SK , Lyerly HK . Immunotherapy of cancer with dendritic-cell-based vaccines . Cancer Immunol. Immunother. 46 (2) , 82 – 87 (1998) . Crossref, Medline, CAS, Google Scholar7 Timmerman JM , Levy R . Dendritic cell vaccines for cancer immunotherapy . Annu. Rev. Med. 50 , 507 – 529 (1999) . Crossref, Medline, CAS, Google Scholar8 Cranmer LD , Trevor KT , Hersh EM . Clinical applications of dendritic cell vaccination in the treatment of cancer . Cancer Immunol. Immunother. 53 (4) , 275 – 306 (2004) . Crossref, Medline, Google Scholar9 Hirschowitz EA , Foody T , Kryscio R , Dickson L , Sturgill J , Yannelli J . Autologous dendritic cell vaccines for non-small-cell lung cancer . J. Clin. Oncol. 22 (14) , 2808 – 2815 (2004) . Crossref, Medline, Google Scholar10 Banchereau J , Briere F , Caux C et al. Immunobiology of dendritic cells . Annu. Rev. Immunol. 18 , 767 – 811 (2000) . Crossref, Medline, CAS, Google Scholar11 Germain RN . MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation . Cell 76 (2) , 287 – 299 (1994) . Crossref, Medline, CAS, Google Scholar12 Pulendran B , Smith JL , Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo . Proc. Natl Acad. Sci. USA 96 (3) , 1036 – 1041 (1999) . Crossref, Medline, CAS, Google Scholar13 Akbari O , DeKruyff RH , Umetsu DT . Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen . Nat. Immunol. 2 (8) , 725 – 731 (2001) . Crossref, Medline, CAS, Google Scholar14 Woo EY , Chu CS , Goletz TJ et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer . Cancer Res. 61 (12) , 4766 – 4772 (2001) . Medline, CAS, Google Scholar15 Neuner A , Schindel M , Wildenberg U , Muley T , Lahm H , Fischer JR . Cytokine secretion: clinical relevance of immunosuppression in non-small cell lung cancer . Lung Cancer 34 (Suppl. 2) , S79 – S82 (2001) . Crossref, Medline, Google Scholar16 Schwartz RH . Models of T cell anergy: is there a common molecular mechanism? J. Exp. Med. 184 (1) , 1 – 8 (1996) . Crossref, Medline, CAS, Google Scholar17 Lombardi G , Sidhu S , Batchelor R , Lechler R . Anergic T cells as suppressor cells in vitro . Science 264 (5165) , 1587 – 1589 (1994) . Crossref, Medline, CAS, Google Scholar18 Ruffini PA , Rivoltini L , Silvani A , Boiardi A , Parmiani G . Factors, including transforming growth factor beta, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells . Cancer Immunol. Immunother. 36 (6) , 409 – 416 (1993) . Crossref, Medline, CAS, Google Scholar19 Tigges MA , Casey LS , Koshland ME . Mechanism of interleukin-2 signaling: mediation of different outcomes by a single receptor and transduction pathway . Science 243 (4892) , 781 – 786 (1989) . Crossref, Medline, CAS, Google Scholar20 Rook AH , Kehrl JH , Wakefield LM et al. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness . J. Immunol. 136 (10) , 3916 – 3920 (1986) . Medline, CAS, Google Scholar21 Tsunawaki S , Sporn M , Ding A , Nathan C . Deactivation of macrophages by transforming growth factor-beta . Nature 334 (6179) , 260 – 262 (1988) . Crossref, Medline, CAS, Google Scholar22 Fontana A , Frei K , Bodmer S et al. Transforming growth factor-beta inhibits the generation of cytotoxic T cells in virus-infected mice . J. Immunol. 143 (10) , 3230 – 3234 (1989) . Medline, CAS, Google Scholar23 Hirte HW , Clark DA , O’Connell G , Rusthoven J , Mazurka J . Reversal of suppression of lymphokine-activated killer cells by transforming growth factor-beta in ovarian carcinoma ascitic fluid requires interleukin-2 combined with anti-CD3 antibody . Cell. Immunol. 142 (1) , 207 – 216 (1992) . Crossref, Medline, CAS, Google Scholar24 Kelly RJ , Giaccone G . Lung cancer vaccines . Cancer J. 17 (5) , 302 – 308 (2011) . Crossref, Medline, CAS, Google Scholar25 Yasumoto K , Hanagiri T , Takenoyama M . Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer . Gen. Thorac. Cardiovasc. Surg. 57 (9) , 449 – 457 (2009) . Crossref, Medline, Google Scholar26 Raez LE , Fein S , Podack ER . Lung cancer immunotherapy . Clin. Med. Res. 3 (4) , 221 – 228 (2005) . Crossref, Medline, CAS, Google Scholar27 Nemunaitis J , Dillman RO , Schwarzenberger PO et al. Phase II Study of Lucanix™ (belagenpumatucel) a transforming growth factor 2 (TGF-β 2 ) antisense gene modified allogeneic tumor cell vaccine in non small cell lung cancer (NSCLC) . J. Clin. Oncol. (In Press). Google Scholar28 Sporn MB , Roberts AB , Wakefield LM , Assoian RK . Transforming growth factor-beta: biological function and chemical structure . Science 233 (4763) , 532 – 534 (1986) . Crossref, Medline, CAS, Google Scholar29 Massague J . The TGF-beta family of growth and differentiation factors . Cell 49 (4) , 437 – 438 (1987) . Crossref, Medline, CAS, Google Scholar30 Border WA , Ruoslahti E . Transforming growth factor-beta in disease: the dark side of tissue repair . J. Clin. Invest. 90 (1) , 1 – 7 (1992) . Crossref, Medline, CAS, Google Scholar31 Bodmer S , Strommer K , Frei K et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2 . J. Immunol. 143 (10) , 3222 – 3229 (1989) . Medline, CAS, Google Scholar32 Jakowlew SB , Mathias A , Chung P , Moody TW . Expression of transforming growth factor beta ligand and receptor messenger RNAs in lung cancer cell lines . Cell Growth Differ. 6 (4) , 465 – 476 (1995) . Medline, CAS, Google Scholar33 Kong F , Jirtle RL , Huang DH , Clough RW , Anscher MS . Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma . Cancer 86 (9) , 1712 – 1719 (1999) . Crossref, Medline, CAS, Google Scholar34 Kasid A , Bell GI , Director EP . Effects of transforming growth factor-beta on human lymphokine-activated killer cell precursors. Autocrine inhibition of cellular proliferation and differentiation to immune killer cells . J. Immunol. 141 (2) , 690 – 698 (1988) . Medline, CAS, Google Scholar35 Fakhrai H , Mantil JC , Liu L et al. Phase I clinical trial of TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma . Cancer Gene Ther. 13 (12) , 1052 – 1060 (2006) . Crossref, Medline, CAS, Google Scholar36 Liau LM , Fakhrai H , Black KL . Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene . Neurol. Res. 20 (8) , 742 – 747 (1998) . Crossref, Medline, CAS, Google Scholar37 Dorigo O , Shawler DL , Royston I , Sobol RE , Berek JS , Fakhrai H . Combination of transforming growth factor beta antisense and interleukin-2 gene therapy in the murine ovarian teratoma model . Gynecol. Oncol. 71 (2) , 204 – 210 (1998) . Crossref, Medline, CAS, Google Scholar38 Tzai TS , Shiau AL , Liu LL , Wu CL . Immunization with TGF-beta antisense oligonucleotide-modified autologous tumor vaccine enhances the antitumor immunity of MBT-2 tumor-bearing mice through upregulation of MHC class I and Fas expressions . Anticancer Res. 20 (3A) , 1557 – 1562 (2000) . Medline, CAS, Google Scholar39 Tzai TS , Lin CI , Shiau AL , Wu CL . Antisense oligonucleotide specific for transforming growth factor-beta 1 inhibit both in vitro and in vivo growth of MBT-2 murine bladder cancer . Anticancer Res. 18 (3A) , 1585 – 1589 (1998) . Medline, CAS, Google Scholar40 Marzo AL , Fitzpatrick DR , Robinson BW , Scott B . Antisense oligonucleotides specific for transforming growth factor beta2 inhibit the growth of malignant mesothelioma both in vitro and in vivo . Cancer Res. 57 (15) , 3200 – 3207 (1997) . Medline, CAS, Google Scholar41 Park JA , Wang E , Kurt RA , Schluter SF , Hersh EM , Akporiaye ET . Expression of an antisense transforming growth factor-beta1 transgene reduces tumorigenicity of EMT6 mammary tumor cells . Cancer Gene Ther. 4 (1) , 42 – 50 (1997) . Medline, CAS, Google Scholar42 Kettering JD , Mohamedali AM , Green LM , Gridley DS . IL-2 gene and antisense TGF-beta1 strategies counteract HSV-2 transformed tumor progression . Technol. Cancer Res. Treat. 2 (3) , 211 – 221 (2003) . Crossref, Medline, CAS, Google Scholar43 Fakhrai H , Dorigo O , Shawler DL et al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy . Proc. Natl Acad. Sci. USA 93 (7) , 2909 – 2914 (1996) . Crossref, Medline, CAS, Google Scholar44 Shepherd FA , Dancey J , Ramlau R et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy . J. Clin. Oncol. 18 (10) , 2095 – 2103 (2000) . Crossref, Medline, CAS, Google Scholar45 Fossella FV , DeVore R , Kerr RN et al. Randomized Phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group . J. Clin. Oncol. 18 (12) , 2354 – 2362 (2000) . Crossref, Medline, CAS, Google Scholar46 Hanna N , Shepherd FA , Fossella FV et al. Randomized Phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy . J. Clin. Oncol. 22 (9) , 1589 – 1597 (2004) . Crossref, Medline, CAS, Google Scholar47 Tsao MS , Sakurada A , Cutz JC et al. Erlotinib in lung cancer – molecular and clinical predictors of outcome . N. Engl. J. Med. 353 (2) , 133 – 144 (2005) . Crossref, Medline, CAS, Google Scholar48 Shepherd FA , Rodrigues Pereira J , Ciuleanu T et al. Erlotinib in previously treated non-small-cell lung cancer . N. Engl. J. Med. 353 (2) , 123 – 132 (2005) . Crossref, Medline, CAS, Google Scholar49 Kris MG , Natale RB , Herbst RS et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial . JAMA 290 (16) , 2149 – 2158 (2003) . Crossref, Medline, CAS, Google Scholar50 Nemunaitis J , Nemunaitis M , Senzer N et al. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients . Cancer Gene Ther. 16 (8) , 620 – 624 (2009) . Crossref, Medline, CAS, Google Scholar51 Dranoff G , Jaffee E , Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity . Proc. Natl Acad. Sci. USA 90 (8) , 3539 – 3543 (1993) . Crossref, Medline, CAS, Google Scholar52 Scheffer SR , Nave H , Korangy F et al. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo . Int. J. Cancer 103 (2) , 205 – 211 (2003) . Crossref, Medline, CAS, Google Scholar53 Jaffee EM , Thomas MC , Huang AY , Hauda KM , Levitsky HI , Pardoll DM . Enhanced immune priming with spatial distribution of paracrine cytokine vaccines . J. Immunother. Emphasis Tumor Immunol. 19 (3) , 176 – 183 (1996) . Crossref, Medline, CAS, Google Scholar54 Simons JW , Mikhak B , Chang JF et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor using ex vivo gene transfer . Cancer Res. 59 (20) , 5160 – 5168 (1999) . Medline, CAS, Google Scholar55 Soiffer R , Lynch T , Mihm M et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma . Proc. Natl Acad. Sci. USA 95 (22) , 13141 – 13146 (1998) . Crossref, Medline, CAS, Google Scholar56 Simons JW , Jaffee EM , Weber CE et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte–macrophage colony-stimulating factor gene transfer . Cancer Res. 57 (8) , 1537 – 1546 (1997) . Medline, CAS, Google Scholar57 Jaffee EM , Hruban RH , Biedrzycki B et al. Novel allogeneic granulocyte–macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a Phase I trial of safety and immune activation . J. Clin. Oncol. 19 (1) , 145 – 156 (2001) . Crossref, Medline, CAS, Google Scholar58 Salgia R , Lynch T , Skarin A et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma . J. Clin. Oncol. 21 (4) , 624 – 630 (2003) . Crossref, Medline, Google Scholar59 Soiffer R , Hodi FS , Haluska F et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma . J. Clin. Oncol. 21 (17) , 3343 – 3350 (2003) . Crossref, Medline, CAS, Google Scholar60 Nemunaitis J , Sterman D , Jablons D et al. Granulocyte–macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer . J. Natl Cancer Inst. 96 (4) , 326 – 331 (2004) . Crossref, Medline, CAS, Google Scholar61 Nemunaitis J , Jahan T , Ross H et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer . Cancer Gene Ther. 13 (6) , 555 – 562 (2006) . Crossref, Medline, CAS, Google Scholar62 Liu BL , Robinson M , Han ZQ et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties . Gene Ther. 10 (4) , 292 – 303 (2003) . Crossref, Medline, CAS, Google Scholar63 Hu JC , Coffin RS , Davis CJ et al. A Phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor . Clin. Cancer Res. 12 (22) , 6737 – 6747 (2006) . Crossref, Medline, CAS, Google Scholar64 Senzer NN , Kaufman HL , Amatruda T et al. Phase II clinical trial of a granulocyte–macrophage colony-stimulating factor-encoding, second-generation oncolytic herpes virus in patients with unresectable metastatic melanoma . J. Clin. Oncol. 27 (34) , 5763 – 5771 (2009) . Crossref, Medline, CAS, Google Scholar65 Mach N , Dranoff G . Cytokine-secreting tumor cell vaccines . Curr. Opin. Immunol. 12 (5) , 571 – 575 (2000) . Crossref, Medline, CAS, Google Scholar66 Young JW , Inaba K . Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity . J. Exp. Med. 183 (1) , 7 – 11 (1996) . Crossref, Medline, CAS, Google Scholar67 Shen Z , Reznikoff G , Dranoff G , Rock KL . Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules . J. Immunol. 158 (6) , 2723 – 2730 (1997) . Medline, CAS, Google Scholar68 Murtaza A , Kuchroo VK , Freeman GJ . Changes in the strength of co-stimulation through the B7/CD28 pathway alter functional T cell responses to altered peptide ligands . Int. Immunol. 11 (3) , 407 – 416 (1999) . Crossref, Medline, CAS, Google Scholar69 Kawano T , Cui J , Koezuka Y et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides . Science 278 (5343) , 1626 – 1629 (1997) . Crossref, Medline, CAS, Google Scholar70 Yamaguchi H , Furukawa K , Fortunato SR et al. Human monoclonal antibody with dual GM2/GD2 specificity derived from an immunized melanoma patient . Proc. Natl Acad. Sci. USA 87 (9) , 3333 – 3337 (1990) . Crossref, Medline, CAS, Google Scholar71 Bendelac A , Rivera MN , Park SH , Roark JH . Mouse CD1-specific NK1 T cells: development, specificity, and function . Annu. Rev. Immunol. 15 , 535 – 562 (1997) . Crossref, Medline, CAS, Google Scholar72 Smyth MJ , Crowe NY , Hayakawa Y , Takeda K , Yagita H , Godfrey DI . NKT cells – conductors of tumor immunity? Curr. Opin. Immunol. 14 (2) , 165 – 171 (2002) . Crossref, Medline, CAS, Google Scholar73 Senzer N , Bedell C , Nemunaitis J . OncoVEXGM-CSF: an oncolytic viral immunotherapeutic in melanoma . Drugs Fut. 25 (6) , 449 (2010) . Crossref, Google Scholar74 Wolchok JD , Hoos A , O’Day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria . Clin. Cancer Res. 15 (23) , 7412 – 7420 (2009) . Crossref, Medline, CAS, Google Scholar75 Korn EL , Liu PY , Lee SJ et al. Meta-analysis of Phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future Phase II trials . J. Clin. Oncol. 26 (4) , 527 – 534 (2008) . Crossref, Medline, Google Scholar76 Antonia SJ , Seigne J , Diaz J et al. Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma . J. Urol. 167 (5) , 1995 – 2000 (2002) . Crossref, Medline, CAS, Google Scholar77 Horig H , Lee DS , Conkright W et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule . Cancer Immunol. Immunother. 49 (9) , 504 – 514 (2000) . Crossref, Medline, CAS, Google Scholar78 Johnston JV , Malacko AR , Mizuno MT et al. B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by major histocompatibility complex class I-restricted CD8+ cytolytic T lymphocytes . J. Exp. Med. 183 (3) , 791 – 800 (1996) . Crossref, Medline, CAS, Google Scholar79 Liu B , Podack ER , Allison JP , Malek TR . Generation of primary tumor-specific CTL in vitro to immunogenic and poorly immunogenic mouse tumors . J. Immunol. 156 (3) , 1117 – 1125 (1996) . Medline, CAS, Google Scholar80 Nabel GJ , Gordon D , Bishop DK et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes . Proc. Natl Acad. Sci. USA 93 (26) , 15388 – 15393 (1996) . Crossref, Medline, CAS, Google Scholar81 Yamazaki K , Spruill G , Rhoderick J , Spielman J , Savaraj N , Podack ER . Small cell lung carcinomas express shared and private tumor antigens presented by HLA-A1 or HLA-A2 . Cancer Res. 59 (18) , 4642 – 4650 (1999) . Medline, CAS, Google Scholar82 Raez LE , Cassileth PA , Schlesselman JJ et al. Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer . J. Clin. Oncol. 22 (14) , 2800 – 2807 (2004) . Crossref, Medline, CAS, Google Scholar83 Raez LE , Santos ES , Mudad R , Podack ER . Clinical trials targeting lung cancer with active immunotherapy: the scope of vaccines . Exp. Rev. Anticancer Ther. 5 (4) , 635 – 644 (2005) . Crossref, Medline, CAS, Google Scholar84 Aguiar JC , Hedstrom RC , Rogers WO et al. Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device . Vaccine 20 (1–2) , 275 – 280 (2001) . Crossref, Medline, CAS, Google Scholar85 Nemunaitis JMT , Senzer N , Cunningham C et al. Phase I trial of sequential administration of recombinant DNA and adenoviral expressing L523S protein in early stage non small cell lung cancer (NSCLC) . Mol. Ther. 13 (6) , 1185 – 1191 (2006) . Crossref, Medline, CAS, Google Scholar86 Olivares J , Kumar P , Yu Y et al. Phase I trial of TGF-beta2 antisense GM-CSF gene-modified autologous tumor cell (TAG) vaccine . Clin. Cancer Res. 17 (1) , 183 – 192 (2011) . Crossref, Medline, CAS, Google Scholar87 Kusakabe M , Cheong PL , Nikfar R , McLennan IS , Koishi K . The structure of the TGF-beta latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-betas . J. Cell Biochem. 103 (1) , 311 – 320 (2008) . Crossref, Medline, CAS, Google Scholar88 Page RE , Klein-Szanto AJ , Litwin S et al. Increased expression of the pro-protein convertase furin predicts decreased survival in ovarian cancer . Cell Oncol. 29 (4) , 289 – 299 (2007) . Medline, CAS, Google Scholar89 Pesu M , Watford WT , Wei L et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance . Nature 455 (7210) , 246 – 250 (2008) . Crossref, Medline, CAS, Google Scholar90 Rao DD , Maples PB , Senzer N et al. Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference . Cancer Gene Ther. 17 (11) , 780 – 791 (2010) . Crossref, Medline, CAS, Google Scholar91 Wu L , Fan J , Belasco JG . Importance of translation and nonnucleolytic ago proteins for on-target RNA interference . Curr. Biol. 18 (17) , 1327 – 1332 (2008) . Crossref, Medline, CAS, Google Scholar92 Wang B , Li S , Qi HH , Chowdhury D , Shi Y , Novina CD . Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins . Nat. Struct. Mol. Biol. 16 (12) , 1259 – 1266 (2009) . Crossref, Medline, CAS, Google Scholar93 Senzer N , Barve M , Kuhn J et al. Phase I trial of ‘bi-shRNAi(furin)/GMCSF DNA/autologous tumor cell’ vaccine (FANG) in advanced cancer . Mol. Ther. 20 (3) , 679 – 686 (2012) . Crossref, Medline, CAS, Google Scholar94 Kumar P , Phalon C , Pappen BO et al. Expression of GMCSF, TGFβ1, TGFβ2 and correlation to FURIN expression in culture supernatants from pre- and post-FANG™ plasmid transfected autologous tumor cells . Mol. Ther. 20 (Suppl. 1) , S197 (2012) (Abstract 511) . Google Scholar95 Ramlau R , Quoix E , Rolski J et al. A Phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer . J. Thorac. Oncol. 3 (7) , 735 – 744 (2008) . Crossref, Medline, Google Scholar96 Rossi A , Maione P , Schettino C et al. Non-small-cell lung carcinoma vaccines in clinical trials . Expert Rev. Vaccin. 10 (6) , 887 – 897 (2011) . Crossref, Medline, CAS, Google Scholar97 Morris JC , Vahanian N , Janik JE . Phase I study of an antitumor vaccination using α (1,3)galactosyltransferase expressing allogeneic tumor cells in patients (Pts) with refractory or recurrent non-small cell lung cancer (NSCLC) . J. Clin. Oncol. ASCO Annu. Meet. Proc. 23 (Suppl.) , 2586 (2005) . Medline, Google Scholar98 Nemunaitis J , Dillman RO , Schwarzenberger PO et al. Phase II study of belagenpumatucel-L, a transforming growth factor β-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer . J. Clin. Oncol. 24 (29) , 4721 – 4730 (2006) . Crossref, Medline, CAS, Google Scholar99 Quoix E , Ramlau R , Westeel V et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial . Lancet Oncol. 12 (12) , 1125 – 1133 (2011) . Crossref, Medline, CAS, Google Scholar100 O’Brien ME , Anderson H , Kaukel E et al. SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: Phase III results . Annu. Oncol. 15 (6) , 906 – 914 (2004) . Crossref, Medline, Google Scholar101 Morse MA , Garst J , Osada T et al. A Phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer . J. Transl. Med. 3 (1) , 9 (2005) . Crossref, Medline, Google Scholar102 Gonzalez G , Crombet T , Torres F et al. Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy . Annu. Oncol. 14 (3) , 461 – 466 (2003) . Crossref, Medline, CAS, Google Scholar103 Ramos TC , Vinageras EN , Ferrer MC et al. Treatment of NSCLC patients with an EGF-based cancer vaccine: report of a Phase I trial . Cancer Biol. Ther. 5 (2) , 145 – 149 (2006) . Crossref, Medline, CAS, Google Scholar104 Brunsvig PF , Aamdal S , Gjertsen MK et al. Telomerase peptide vaccination: a Phase I/II study in patients with non-small cell lung cancer . Cancer Immunol. Immunother. 55 (12) , 1553 – 1564 (2006) . Crossref, Medline, CAS, Google Scholar105 Butts C , Murray N , Maksymiuk A et al. Randomized Phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer . J. Clin. Oncol. 23 (27) , 6674 – 6681 (2005) . Crossref, Medline, CAS, Google Scholar106 Palmer M , Parker J , Modi S et al. Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer . Clin. Lung Cancer 3 (1) , 49 – 57; Discussion 58 (2001) . Crossref, Medline, CAS, Google Scholar107 Barve M , Bender J , Senzer N et al. Induction of immune responses and clinical efficacy in a Phase II trial of IDM-2101, a 10-epitope cytotoxic T-lymphocyte vaccine, in metastatic non-small-cell lung cancer . J. Clin. Oncol. 26 (27) , 4418 – 4425 (2008) . Crossref, Medline, CAS, Google Scholar108 Alfonso S , Diaz RM , de la Torre A et al. 1E10 anti-idiotype vaccine in non-small cell lung cancer: experience in stage IIIb/IV patients . Cancer Biol. Ther. 6 (12) , 1847 – 1852 (2007) . Crossref, Medline, CAS, Google Scholar109 Hernandez AM , Toledo D , Martinez D et al. Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody . J. Immunol. 181 (9) , 6625 – 6634 (2008) . Crossref, Medline, CAS, Google Scholar110 Perroud MW Jr , Honma HN , Barbeiro AS et al. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a Phase I pilot study . J. Exp. Clin. Cancer Res. 30 , 65 (2011) . Crossref, Medline, Google Scholar111 Zhong R , Teng J , Han B , Zhong H . Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer . Cancer Immunol. Immunother. 60 (10) , 1497 – 1502 (2011) . Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Gene Therapy: Technologies & ApplicationsMetrics Downloaded 40 times History Published online 13 March 2013 Published in print March 2013 Information© Future Medicine Ltd© Future Medicine LtdPDF download" @default.
- W4254314104 created "2022-05-12" @default.
- W4254314104 creator A5055054082 @default.
- W4254314104 date "2013-03-01" @default.
- W4254314104 modified "2023-10-16" @default.
- W4254314104 title "Immunogene therapy" @default.
- W4254314104 cites W1528047660 @default.
- W4254314104 cites W1528827595 @default.
- W4254314104 cites W1532147512 @default.
- W4254314104 cites W1539607590 @default.
- W4254314104 cites W1542448731 @default.
- W4254314104 cites W1562422876 @default.
- W4254314104 cites W1669313544 @default.
- W4254314104 cites W1839238860 @default.
- W4254314104 cites W1901657789 @default.
- W4254314104 cites W1964056896 @default.
- W4254314104 cites W1970476748 @default.
- W4254314104 cites W1973805241 @default.
- W4254314104 cites W1979285169 @default.
- W4254314104 cites W1984940554 @default.
- W4254314104 cites W1986137152 @default.
- W4254314104 cites W1986801129 @default.
- W4254314104 cites W1987657194 @default.
- W4254314104 cites W1990507442 @default.
- W4254314104 cites W1991148746 @default.
- W4254314104 cites W1993615391 @default.
- W4254314104 cites W1997398245 @default.
- W4254314104 cites W2000833492 @default.
- W4254314104 cites W2002339959 @default.
- W4254314104 cites W2004730668 @default.
- W4254314104 cites W2007768242 @default.
- W4254314104 cites W2013613214 @default.
- W4254314104 cites W2016693026 @default.
- W4254314104 cites W2018972324 @default.
- W4254314104 cites W2021896163 @default.
- W4254314104 cites W2023479489 @default.
- W4254314104 cites W2029555062 @default.
- W4254314104 cites W2029685983 @default.
- W4254314104 cites W2035572849 @default.
- W4254314104 cites W2038300953 @default.
- W4254314104 cites W2042742051 @default.
- W4254314104 cites W2043063663 @default.
- W4254314104 cites W2044848214 @default.
- W4254314104 cites W2050749285 @default.
- W4254314104 cites W2053153575 @default.
- W4254314104 cites W2054873994 @default.
- W4254314104 cites W2058006748 @default.
- W4254314104 cites W2063495860 @default.
- W4254314104 cites W2064507032 @default.
- W4254314104 cites W2065157516 @default.
- W4254314104 cites W2067079164 @default.
- W4254314104 cites W2067458140 @default.
- W4254314104 cites W2074756139 @default.
- W4254314104 cites W2078035182 @default.
- W4254314104 cites W2080603024 @default.
- W4254314104 cites W2081349312 @default.
- W4254314104 cites W2082150850 @default.
- W4254314104 cites W2086142513 @default.
- W4254314104 cites W2087526889 @default.
- W4254314104 cites W2087863947 @default.
- W4254314104 cites W2090297133 @default.
- W4254314104 cites W2092653359 @default.
- W4254314104 cites W2099648846 @default.
- W4254314104 cites W2099748840 @default.
- W4254314104 cites W2100158834 @default.
- W4254314104 cites W2104616589 @default.
- W4254314104 cites W2111220263 @default.
- W4254314104 cites W2112897941 @default.
- W4254314104 cites W2113316495 @default.
- W4254314104 cites W2114300639 @default.
- W4254314104 cites W2117333200 @default.
- W4254314104 cites W2120718661 @default.
- W4254314104 cites W2121895986 @default.
- W4254314104 cites W2122081319 @default.
- W4254314104 cites W2124430059 @default.
- W4254314104 cites W2124757685 @default.
- W4254314104 cites W2126043466 @default.
- W4254314104 cites W2126821510 @default.
- W4254314104 cites W2130652363 @default.
- W4254314104 cites W2134667653 @default.
- W4254314104 cites W2137723371 @default.
- W4254314104 cites W2138297714 @default.
- W4254314104 cites W2139282511 @default.
- W4254314104 cites W2142735836 @default.
- W4254314104 cites W2143458560 @default.
- W4254314104 cites W2146571367 @default.
- W4254314104 cites W2156763707 @default.
- W4254314104 cites W2157215695 @default.
- W4254314104 cites W2158721489 @default.
- W4254314104 cites W2159779508 @default.
- W4254314104 cites W2161307276 @default.
- W4254314104 cites W2161706967 @default.
- W4254314104 cites W2164374194 @default.
- W4254314104 cites W2165320653 @default.
- W4254314104 cites W2167829195 @default.
- W4254314104 cites W2170602631 @default.
- W4254314104 cites W2171190459 @default.
- W4254314104 cites W2172273197 @default.