Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281677825> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4281677825 endingPage "1940" @default.
- W4281677825 startingPage "1928" @default.
- W4281677825 abstract "Abstract The multi‐organ classification of medical images in disease examination and diagnosis is very valuable. However, some organs features of medical imaging are not obvious, and the organ of interest just occupy several pixels in the image. Therefore, the accuracy of multi‐organ classification of medical images using classic convolutional neural networks (CNN) cannot meet actual requirements. To address the above problems, a Deep Feature Enhancement and Xgboost (DFEX) network is proposed in this paper. The network enhances the discriminability of deep features through the dual‐core CNN feature extraction, the transfer module, and the multi‐level semantic feature fusion module. The dual‐core CNN feature extraction and transfer module extracts high‐level semantic features with detailed information by four aggregation units, to alleviate the problem of inconspicuous imaging features. The multi‐level semantic feature fusion module fuses the low‐level, middle‐level, and high‐level semantic features of the image to obtain more detailed features, which alleviates the problem that the target organ is easily affected by other organs. Finally, the enhanced features are fed to the Xgboost ensemble method for multi‐organ classification tasks of medical images. Our method is compared with 4 different classic networks on 553 cases. The experiment results show our method has better overall performance. Especially, for nasopharynx and vocal fold closing, the classification accuracies of our method achieve 84.39% and 88.00%. Compared with the best performers in classic networks, the accuracies have been increased by 3.58% and 15.62% respectively." @default.
- W4281677825 created "2022-06-13" @default.
- W4281677825 creator A5029615731 @default.
- W4281677825 creator A5035190973 @default.
- W4281677825 creator A5048045953 @default.
- W4281677825 creator A5085426866 @default.
- W4281677825 creator A5088673907 @default.
- W4281677825 date "2022-06-10" @default.
- W4281677825 modified "2023-09-26" @default.
- W4281677825 title "Deep feature enhancement and Xgboost network for multi‐organ classification" @default.
- W4281677825 cites W2007929492 @default.
- W4281677825 cites W2077474654 @default.
- W4281677825 cites W2080705865 @default.
- W4281677825 cites W2086234013 @default.
- W4281677825 cites W2194775991 @default.
- W4281677825 cites W2294712740 @default.
- W4281677825 cites W2412782625 @default.
- W4281677825 cites W2746647587 @default.
- W4281677825 cites W2799213142 @default.
- W4281677825 cites W2884530895 @default.
- W4281677825 cites W2891621179 @default.
- W4281677825 cites W2898260073 @default.
- W4281677825 cites W2911440706 @default.
- W4281677825 cites W2958239831 @default.
- W4281677825 cites W2960866034 @default.
- W4281677825 cites W2963446712 @default.
- W4281677825 cites W2970853434 @default.
- W4281677825 cites W2970955020 @default.
- W4281677825 cites W2996699350 @default.
- W4281677825 cites W3006805607 @default.
- W4281677825 cites W3010498327 @default.
- W4281677825 cites W3083184578 @default.
- W4281677825 cites W3102476541 @default.
- W4281677825 cites W3138516171 @default.
- W4281677825 doi "https://doi.org/10.1002/ima.22766" @default.
- W4281677825 hasPublicationYear "2022" @default.
- W4281677825 type Work @default.
- W4281677825 citedByCount "0" @default.
- W4281677825 crossrefType "journal-article" @default.
- W4281677825 hasAuthorship W4281677825A5029615731 @default.
- W4281677825 hasAuthorship W4281677825A5035190973 @default.
- W4281677825 hasAuthorship W4281677825A5048045953 @default.
- W4281677825 hasAuthorship W4281677825A5085426866 @default.
- W4281677825 hasAuthorship W4281677825A5088673907 @default.
- W4281677825 hasConcept C108583219 @default.
- W4281677825 hasConcept C138885662 @default.
- W4281677825 hasConcept C153180895 @default.
- W4281677825 hasConcept C154945302 @default.
- W4281677825 hasConcept C160633673 @default.
- W4281677825 hasConcept C2776401178 @default.
- W4281677825 hasConcept C41008148 @default.
- W4281677825 hasConcept C41895202 @default.
- W4281677825 hasConcept C52622490 @default.
- W4281677825 hasConcept C81363708 @default.
- W4281677825 hasConceptScore W4281677825C108583219 @default.
- W4281677825 hasConceptScore W4281677825C138885662 @default.
- W4281677825 hasConceptScore W4281677825C153180895 @default.
- W4281677825 hasConceptScore W4281677825C154945302 @default.
- W4281677825 hasConceptScore W4281677825C160633673 @default.
- W4281677825 hasConceptScore W4281677825C2776401178 @default.
- W4281677825 hasConceptScore W4281677825C41008148 @default.
- W4281677825 hasConceptScore W4281677825C41895202 @default.
- W4281677825 hasConceptScore W4281677825C52622490 @default.
- W4281677825 hasConceptScore W4281677825C81363708 @default.
- W4281677825 hasIssue "6" @default.
- W4281677825 hasLocation W42816778251 @default.
- W4281677825 hasOpenAccess W4281677825 @default.
- W4281677825 hasPrimaryLocation W42816778251 @default.
- W4281677825 hasRelatedWork W2279398222 @default.
- W4281677825 hasRelatedWork W2546942002 @default.
- W4281677825 hasRelatedWork W2731899572 @default.
- W4281677825 hasRelatedWork W3133861977 @default.
- W4281677825 hasRelatedWork W3156786002 @default.
- W4281677825 hasRelatedWork W4200173597 @default.
- W4281677825 hasRelatedWork W4299822940 @default.
- W4281677825 hasRelatedWork W4312417841 @default.
- W4281677825 hasRelatedWork W4321369474 @default.
- W4281677825 hasRelatedWork W4366492315 @default.
- W4281677825 hasVolume "32" @default.
- W4281677825 isParatext "false" @default.
- W4281677825 isRetracted "false" @default.
- W4281677825 workType "article" @default.