Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283397336> ?p ?o ?g. }
- W4283397336 endingPage "155008" @default.
- W4283397336 startingPage "155008" @default.
- W4283397336 abstract "Objective.Material decomposition (MD) evaluates the elemental composition of human tissues and organs via computed tomography (CT) and is indispensable in correlating anatomical images with functional ones. A major issue in MD is inaccurate elemental information about the real human body. To overcome this problem, we developed a virtual CT system model, by which various reconstructed images can be generated based on ICRP110 human phantoms with information about six major elements (H, C, N, O, P, and Ca).Approach.We generated CT datasets labelled with accurate elemental information using the proposed generative CT model and trained a deep learning (DL)-based model to estimate the material distribution with the ICRP110 based human phantom as well as the digital Shepp-Logan phantom. The accuracy in quad-, dual-, and single-energy CT cases was investigated. The influence of beam-hardening artefacts, noise, and spectrum variations were analysed with testing datasets including elemental density and anatomical shape variations.Main results.The results indicated that this DL approach can realise precise MD, even with single-energy CT images. Moreover, noise, beam-hardening artefacts, and spectrum variations were shown to have minimal impact on the MD.Significance.Present results suggest that the difficulty to prepare a large CT database can be solved by introducing the virtual CT system and the proposed technique can be applied to clinical radiodiagnosis and radiotherapy." @default.
- W4283397336 created "2022-06-25" @default.
- W4283397336 creator A5027457123 @default.
- W4283397336 creator A5027625166 @default.
- W4283397336 creator A5029736946 @default.
- W4283397336 creator A5046582588 @default.
- W4283397336 creator A5054836092 @default.
- W4283397336 creator A5077389901 @default.
- W4283397336 date "2022-07-19" @default.
- W4283397336 modified "2023-10-16" @default.
- W4283397336 title "Virtual computed-tomography system for deep-learning-based material decomposition" @default.
- W4283397336 cites W2001583012 @default.
- W4283397336 cites W2001881071 @default.
- W4283397336 cites W2002929334 @default.
- W4283397336 cites W2005987054 @default.
- W4283397336 cites W2017441482 @default.
- W4283397336 cites W2038630470 @default.
- W4283397336 cites W2044382911 @default.
- W4283397336 cites W2047605537 @default.
- W4283397336 cites W2053683763 @default.
- W4283397336 cites W2065315977 @default.
- W4283397336 cites W2067947201 @default.
- W4283397336 cites W2083927153 @default.
- W4283397336 cites W2086734311 @default.
- W4283397336 cites W2089825030 @default.
- W4283397336 cites W2110652437 @default.
- W4283397336 cites W2133287637 @default.
- W4283397336 cites W2139684042 @default.
- W4283397336 cites W2140836580 @default.
- W4283397336 cites W2143684211 @default.
- W4283397336 cites W2237473774 @default.
- W4283397336 cites W2253429366 @default.
- W4283397336 cites W2483704245 @default.
- W4283397336 cites W2520016695 @default.
- W4283397336 cites W2533270050 @default.
- W4283397336 cites W2562521985 @default.
- W4283397336 cites W2734514690 @default.
- W4283397336 cites W2792926231 @default.
- W4283397336 cites W2796500552 @default.
- W4283397336 cites W2800910557 @default.
- W4283397336 cites W2889758266 @default.
- W4283397336 cites W2896825861 @default.
- W4283397336 cites W2900595477 @default.
- W4283397336 cites W2905276891 @default.
- W4283397336 cites W2908579316 @default.
- W4283397336 cites W2963376989 @default.
- W4283397336 cites W2982067315 @default.
- W4283397336 cites W2982207430 @default.
- W4283397336 cites W3019546227 @default.
- W4283397336 cites W3021167652 @default.
- W4283397336 cites W3038014657 @default.
- W4283397336 cites W3088629902 @default.
- W4283397336 cites W3088729822 @default.
- W4283397336 cites W3101114211 @default.
- W4283397336 cites W3126008863 @default.
- W4283397336 cites W3128861346 @default.
- W4283397336 cites W3171189980 @default.
- W4283397336 cites W3194478418 @default.
- W4283397336 cites W3199670974 @default.
- W4283397336 cites W4297619556 @default.
- W4283397336 doi "https://doi.org/10.1088/1361-6560/ac7bcd" @default.
- W4283397336 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35738247" @default.
- W4283397336 hasPublicationYear "2022" @default.
- W4283397336 type Work @default.
- W4283397336 citedByCount "2" @default.
- W4283397336 countsByYear W42833973362023 @default.
- W4283397336 crossrefType "journal-article" @default.
- W4283397336 hasAuthorship W4283397336A5027457123 @default.
- W4283397336 hasAuthorship W4283397336A5027625166 @default.
- W4283397336 hasAuthorship W4283397336A5029736946 @default.
- W4283397336 hasAuthorship W4283397336A5046582588 @default.
- W4283397336 hasAuthorship W4283397336A5054836092 @default.
- W4283397336 hasAuthorship W4283397336A5077389901 @default.
- W4283397336 hasConcept C104293457 @default.
- W4283397336 hasConcept C120665830 @default.
- W4283397336 hasConcept C121332964 @default.
- W4283397336 hasConcept C126838900 @default.
- W4283397336 hasConcept C136229726 @default.
- W4283397336 hasConcept C154945302 @default.
- W4283397336 hasConcept C192562407 @default.
- W4283397336 hasConcept C31972630 @default.
- W4283397336 hasConcept C41008148 @default.
- W4283397336 hasConcept C544519230 @default.
- W4283397336 hasConcept C71924100 @default.
- W4283397336 hasConceptScore W4283397336C104293457 @default.
- W4283397336 hasConceptScore W4283397336C120665830 @default.
- W4283397336 hasConceptScore W4283397336C121332964 @default.
- W4283397336 hasConceptScore W4283397336C126838900 @default.
- W4283397336 hasConceptScore W4283397336C136229726 @default.
- W4283397336 hasConceptScore W4283397336C154945302 @default.
- W4283397336 hasConceptScore W4283397336C192562407 @default.
- W4283397336 hasConceptScore W4283397336C31972630 @default.
- W4283397336 hasConceptScore W4283397336C41008148 @default.
- W4283397336 hasConceptScore W4283397336C544519230 @default.
- W4283397336 hasConceptScore W4283397336C71924100 @default.
- W4283397336 hasFunder F4320321001 @default.
- W4283397336 hasFunder F4320334764 @default.
- W4283397336 hasIssue "15" @default.