Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283770117> ?p ?o ?g. }
- W4283770117 endingPage "100179" @default.
- W4283770117 startingPage "100179" @default.
- W4283770117 abstract "Previous research has combined model-free reinforcement learning with model-based tree search methods to solve the unit commitment problem with stochastic demand and renewables generation. This approach was limited to shallow search depths and suffered from significant variability in run time across problem instances with varying complexity. To mitigate these issues, we extend this methodology to more advanced search algorithms based on A* search. First, we develop a problem-specific heuristic based on priority list unit commitment methods and apply this in Guided A* search, reducing run time by up to 94% with negligible impact on operating costs. In addition, we address the run time variability issue by employing a novel anytime algorithm, Guided IDA*, replacing the fixed search depth parameter with a time budget constraint. We show that Guided IDA* mitigates the run time variability of previous guided tree search algorithms and enables further operating cost reductions of up to 1%." @default.
- W4283770117 created "2022-07-03" @default.
- W4283770117 creator A5038355660 @default.
- W4283770117 creator A5076648607 @default.
- W4283770117 date "2022-08-01" @default.
- W4283770117 modified "2023-10-18" @default.
- W4283770117 title "Reinforcement learning and A* search for the unit commitment problem" @default.
- W4283770117 cites W1964953024 @default.
- W4283770117 cites W1969483458 @default.
- W4283770117 cites W1990994993 @default.
- W4283770117 cites W2021061679 @default.
- W4283770117 cites W2045734422 @default.
- W4283770117 cites W2058140231 @default.
- W4283770117 cites W2067108585 @default.
- W4283770117 cites W2077383738 @default.
- W4283770117 cites W2097535806 @default.
- W4283770117 cites W2109425988 @default.
- W4283770117 cites W2109591158 @default.
- W4283770117 cites W2110050136 @default.
- W4283770117 cites W2110550129 @default.
- W4283770117 cites W2134634502 @default.
- W4283770117 cites W2135599553 @default.
- W4283770117 cites W2138267502 @default.
- W4283770117 cites W2144674760 @default.
- W4283770117 cites W2150470619 @default.
- W4283770117 cites W2154672625 @default.
- W4283770117 cites W2169528473 @default.
- W4283770117 cites W2170794935 @default.
- W4283770117 cites W2534471135 @default.
- W4283770117 cites W2588401480 @default.
- W4283770117 cites W2591980212 @default.
- W4283770117 cites W2743158846 @default.
- W4283770117 cites W2902907165 @default.
- W4283770117 cites W2914728128 @default.
- W4283770117 cites W2952785130 @default.
- W4283770117 cites W2954968417 @default.
- W4283770117 cites W3112388352 @default.
- W4283770117 cites W3118210634 @default.
- W4283770117 cites W3175990319 @default.
- W4283770117 cites W3205288021 @default.
- W4283770117 cites W4246285897 @default.
- W4283770117 cites W4367038411 @default.
- W4283770117 cites W4376848398 @default.
- W4283770117 cites W2558860776 @default.
- W4283770117 doi "https://doi.org/10.1016/j.egyai.2022.100179" @default.
- W4283770117 hasPublicationYear "2022" @default.
- W4283770117 type Work @default.
- W4283770117 citedByCount "5" @default.
- W4283770117 countsByYear W42837701172022 @default.
- W4283770117 countsByYear W42837701172023 @default.
- W4283770117 crossrefType "journal-article" @default.
- W4283770117 hasAuthorship W4283770117A5038355660 @default.
- W4283770117 hasAuthorship W4283770117A5076648607 @default.
- W4283770117 hasBestOaLocation W42837701171 @default.
- W4283770117 hasConcept C113174947 @default.
- W4283770117 hasConcept C11413529 @default.
- W4283770117 hasConcept C116219307 @default.
- W4283770117 hasConcept C119857082 @default.
- W4283770117 hasConcept C121332964 @default.
- W4283770117 hasConcept C125583679 @default.
- W4283770117 hasConcept C126255220 @default.
- W4283770117 hasConcept C133425853 @default.
- W4283770117 hasConcept C134306372 @default.
- W4283770117 hasConcept C135320971 @default.
- W4283770117 hasConcept C139979381 @default.
- W4283770117 hasConcept C14362708 @default.
- W4283770117 hasConcept C154945302 @default.
- W4283770117 hasConcept C162324750 @default.
- W4283770117 hasConcept C163258240 @default.
- W4283770117 hasConcept C173801870 @default.
- W4283770117 hasConcept C19889080 @default.
- W4283770117 hasConcept C207024777 @default.
- W4283770117 hasConcept C33923547 @default.
- W4283770117 hasConcept C41008148 @default.
- W4283770117 hasConcept C62520636 @default.
- W4283770117 hasConcept C8505890 @default.
- W4283770117 hasConcept C89227174 @default.
- W4283770117 hasConcept C90189156 @default.
- W4283770117 hasConcept C97541855 @default.
- W4283770117 hasConceptScore W4283770117C113174947 @default.
- W4283770117 hasConceptScore W4283770117C11413529 @default.
- W4283770117 hasConceptScore W4283770117C116219307 @default.
- W4283770117 hasConceptScore W4283770117C119857082 @default.
- W4283770117 hasConceptScore W4283770117C121332964 @default.
- W4283770117 hasConceptScore W4283770117C125583679 @default.
- W4283770117 hasConceptScore W4283770117C126255220 @default.
- W4283770117 hasConceptScore W4283770117C133425853 @default.
- W4283770117 hasConceptScore W4283770117C134306372 @default.
- W4283770117 hasConceptScore W4283770117C135320971 @default.
- W4283770117 hasConceptScore W4283770117C139979381 @default.
- W4283770117 hasConceptScore W4283770117C14362708 @default.
- W4283770117 hasConceptScore W4283770117C154945302 @default.
- W4283770117 hasConceptScore W4283770117C162324750 @default.
- W4283770117 hasConceptScore W4283770117C163258240 @default.
- W4283770117 hasConceptScore W4283770117C173801870 @default.
- W4283770117 hasConceptScore W4283770117C19889080 @default.
- W4283770117 hasConceptScore W4283770117C207024777 @default.
- W4283770117 hasConceptScore W4283770117C33923547 @default.