Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285105060> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4285105060 endingPage "65338" @default.
- W4285105060 startingPage "65326" @default.
- W4285105060 abstract "Fingerprint-based indoor positioning systems (F-IPS) may provide inexpensive solutions to GPS-denied environments. Most F-IPSs adopt traditional machine learning for position prediction, resulting in low accuracy. Deep neural networks (DNN) were recently employed for F-IPSs to minimize positioning errors. Nevertheless, a DNN-IPS fails to guarantee high accuracy in dynamic environments as it is sensitive to changes in the input data. A convolutional neural network (CNN) is recommended to replace DNN due to its capability to learn the overall topology of fingerprinting images and capture highly abstract features. Due to the convolution process and image representation, CNN-IPS incurs prohibitive storage and computational requirement for implementation on resource-limited devices. This paper incorporates knowledge distillation (KD) into CNN-IPS to distil knowledge from large deep CNNs into small CNNs. The pretrained teacher network uses the soft probability output where the score vector from the trained network is converted into a probability distribution, which is softened by the temperature hyperparameter, leading to a more simplified model. Based on the numerical results, KD-CNN-IPS manifests better localization performance where 79.84% of the positioning errors are within 2 meters while its testing time is only 79.68% of that of the teacher model. Compared to the CNN-IPS, KD-CNN-IPS with precisely the same architecture and size could achieve a performance improvement of 13.65% in terms of the average positioning error." @default.
- W4285105060 created "2022-07-14" @default.
- W4285105060 creator A5013685225 @default.
- W4285105060 creator A5023888403 @default.
- W4285105060 creator A5071773150 @default.
- W4285105060 date "2022-01-01" @default.
- W4285105060 modified "2023-09-25" @default.
- W4285105060 title "A Fast Indoor Positioning Using a Knowledge-Distilled Convolutional Neural Network (KD-CNN)" @default.
- W4285105060 cites W1840106123 @default.
- W4285105060 cites W1964083272 @default.
- W4285105060 cites W2003284483 @default.
- W4285105060 cites W2009133681 @default.
- W4285105060 cites W2033300769 @default.
- W4285105060 cites W2114254062 @default.
- W4285105060 cites W2129088323 @default.
- W4285105060 cites W2142216726 @default.
- W4285105060 cites W2155766243 @default.
- W4285105060 cites W2163993204 @default.
- W4285105060 cites W2807038563 @default.
- W4285105060 cites W2807567209 @default.
- W4285105060 cites W2886522435 @default.
- W4285105060 cites W2901566077 @default.
- W4285105060 cites W2905543083 @default.
- W4285105060 cites W2946290947 @default.
- W4285105060 cites W2960348360 @default.
- W4285105060 cites W2962978694 @default.
- W4285105060 cites W2981035489 @default.
- W4285105060 cites W3015310491 @default.
- W4285105060 cites W3016703042 @default.
- W4285105060 cites W3034368386 @default.
- W4285105060 cites W3043350800 @default.
- W4285105060 cites W3094620144 @default.
- W4285105060 cites W3095049195 @default.
- W4285105060 cites W3158487376 @default.
- W4285105060 cites W3160843329 @default.
- W4285105060 cites W3177196641 @default.
- W4285105060 cites W4237817155 @default.
- W4285105060 doi "https://doi.org/10.1109/access.2022.3183113" @default.
- W4285105060 hasPublicationYear "2022" @default.
- W4285105060 type Work @default.
- W4285105060 citedByCount "8" @default.
- W4285105060 countsByYear W42851050602022 @default.
- W4285105060 countsByYear W42851050602023 @default.
- W4285105060 crossrefType "journal-article" @default.
- W4285105060 hasAuthorship W4285105060A5013685225 @default.
- W4285105060 hasAuthorship W4285105060A5023888403 @default.
- W4285105060 hasAuthorship W4285105060A5071773150 @default.
- W4285105060 hasBestOaLocation W42851050601 @default.
- W4285105060 hasConcept C108583219 @default.
- W4285105060 hasConcept C119857082 @default.
- W4285105060 hasConcept C153180895 @default.
- W4285105060 hasConcept C154945302 @default.
- W4285105060 hasConcept C41008148 @default.
- W4285105060 hasConcept C45347329 @default.
- W4285105060 hasConcept C50644808 @default.
- W4285105060 hasConcept C60229501 @default.
- W4285105060 hasConcept C76155785 @default.
- W4285105060 hasConcept C81363708 @default.
- W4285105060 hasConcept C8642999 @default.
- W4285105060 hasConceptScore W4285105060C108583219 @default.
- W4285105060 hasConceptScore W4285105060C119857082 @default.
- W4285105060 hasConceptScore W4285105060C153180895 @default.
- W4285105060 hasConceptScore W4285105060C154945302 @default.
- W4285105060 hasConceptScore W4285105060C41008148 @default.
- W4285105060 hasConceptScore W4285105060C45347329 @default.
- W4285105060 hasConceptScore W4285105060C50644808 @default.
- W4285105060 hasConceptScore W4285105060C60229501 @default.
- W4285105060 hasConceptScore W4285105060C76155785 @default.
- W4285105060 hasConceptScore W4285105060C81363708 @default.
- W4285105060 hasConceptScore W4285105060C8642999 @default.
- W4285105060 hasFunder F4320321709 @default.
- W4285105060 hasLocation W42851050601 @default.
- W4285105060 hasOpenAccess W4285105060 @default.
- W4285105060 hasPrimaryLocation W42851050601 @default.
- W4285105060 hasRelatedWork W2606416966 @default.
- W4285105060 hasRelatedWork W2731899572 @default.
- W4285105060 hasRelatedWork W2999805992 @default.
- W4285105060 hasRelatedWork W3116150086 @default.
- W4285105060 hasRelatedWork W3130227562 @default.
- W4285105060 hasRelatedWork W3133861977 @default.
- W4285105060 hasRelatedWork W4200173597 @default.
- W4285105060 hasRelatedWork W4281616679 @default.
- W4285105060 hasRelatedWork W4312417841 @default.
- W4285105060 hasRelatedWork W4321369474 @default.
- W4285105060 hasVolume "10" @default.
- W4285105060 isParatext "false" @default.
- W4285105060 isRetracted "false" @default.
- W4285105060 workType "article" @default.