Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285190744> ?p ?o ?g. }
- W4285190744 endingPage "14" @default.
- W4285190744 startingPage "1" @default.
- W4285190744 abstract "Multimodal land cover classification (MLCC) is a fundamental problem in remote sensing interpretation, which can obtain excellent performance on account of the complementary information between the optical and SAR modalities. However, it is usually impossible to obtain multimodal data at the same time, due to the restriction of imaging conditions. When one of the modalities data is completely missing during test phase, classical multimodal learning methods might not be able to handle the MLCC task with privileged modality. In this paper, we propose an efficient Dense Adaptive Grouping Distillation Network (DAGDNet), which learns privileged information from available modalities in the train sets, and improves the classification performance in the test sets when one modality data is scarce. More specifically, to relieve the heterogeneous gaps between different modalities and then transfer the privileged information, we propose an Interactive Gated-based Feature Grouping Module (IG-FGM), which decomposes multimodal features into modalities-shared and modality-specific components to realize the decoupling of multimodal features and grouping distillation. Furthermore, the IG-FGM is inserted into different layers of the “teacher network to implement progressive blending of multi-modalities. Then, to adaptively highlight the importance of hierarchical features distillation and grouping distillation, we propose a Multi-stage Adaptive Distillation Learning (MS-ADL) strategy so that the weights of different distillation losses are required to change continuously along with the training process. Finally, we evaluate the superior performances of our model on representative co-registered optical and SAR datasets." @default.
- W4285190744 created "2022-07-14" @default.
- W4285190744 creator A5027874662 @default.
- W4285190744 creator A5059286206 @default.
- W4285190744 creator A5076729890 @default.
- W4285190744 creator A5082887216 @default.
- W4285190744 date "2022-01-01" @default.
- W4285190744 modified "2023-10-02" @default.
- W4285190744 title "Dense Adaptive Grouping Distillation Network for Multimodal Land Cover Classification With Privileged Modality" @default.
- W4285190744 cites W1941761140 @default.
- W4285190744 cites W2010797227 @default.
- W4285190744 cites W2056148677 @default.
- W4285190744 cites W2063645384 @default.
- W4285190744 cites W2064424409 @default.
- W4285190744 cites W2067562626 @default.
- W4285190744 cites W2100904656 @default.
- W4285190744 cites W2146332392 @default.
- W4285190744 cites W2463402750 @default.
- W4285190744 cites W2582131889 @default.
- W4285190744 cites W2604086375 @default.
- W4285190744 cites W2754395699 @default.
- W4285190744 cites W2765739551 @default.
- W4285190744 cites W2766623491 @default.
- W4285190744 cites W2767290858 @default.
- W4285190744 cites W2772269064 @default.
- W4285190744 cites W2778955544 @default.
- W4285190744 cites W2795024892 @default.
- W4285190744 cites W2800744393 @default.
- W4285190744 cites W2808154247 @default.
- W4285190744 cites W2809440904 @default.
- W4285190744 cites W2883630736 @default.
- W4285190744 cites W2890133123 @default.
- W4285190744 cites W2890248767 @default.
- W4285190744 cites W2891355224 @default.
- W4285190744 cites W2897611955 @default.
- W4285190744 cites W2902163209 @default.
- W4285190744 cites W2944653015 @default.
- W4285190744 cites W2952787292 @default.
- W4285190744 cites W2958977166 @default.
- W4285190744 cites W2963548136 @default.
- W4285190744 cites W2963995737 @default.
- W4285190744 cites W2981652947 @default.
- W4285190744 cites W2989451156 @default.
- W4285190744 cites W2995709945 @default.
- W4285190744 cites W3007363984 @default.
- W4285190744 cites W3010622813 @default.
- W4285190744 cites W3033691877 @default.
- W4285190744 cites W3034368386 @default.
- W4285190744 cites W3035163969 @default.
- W4285190744 cites W3035805339 @default.
- W4285190744 cites W3037788579 @default.
- W4285190744 cites W3048631361 @default.
- W4285190744 cites W3053564872 @default.
- W4285190744 cites W3081345704 @default.
- W4285190744 cites W3096347872 @default.
- W4285190744 cites W3105676814 @default.
- W4285190744 cites W3107716502 @default.
- W4285190744 cites W3119773509 @default.
- W4285190744 cites W3127739228 @default.
- W4285190744 cites W3133717156 @default.
- W4285190744 cites W3138408376 @default.
- W4285190744 cites W3146325045 @default.
- W4285190744 cites W3158200550 @default.
- W4285190744 cites W3166325063 @default.
- W4285190744 cites W3167558523 @default.
- W4285190744 cites W3168367808 @default.
- W4285190744 cites W3213631637 @default.
- W4285190744 doi "https://doi.org/10.1109/tgrs.2022.3176936" @default.
- W4285190744 hasPublicationYear "2022" @default.
- W4285190744 type Work @default.
- W4285190744 citedByCount "3" @default.
- W4285190744 countsByYear W42851907442023 @default.
- W4285190744 crossrefType "journal-article" @default.
- W4285190744 hasAuthorship W4285190744A5027874662 @default.
- W4285190744 hasAuthorship W4285190744A5059286206 @default.
- W4285190744 hasAuthorship W4285190744A5076729890 @default.
- W4285190744 hasAuthorship W4285190744A5082887216 @default.
- W4285190744 hasConcept C111919701 @default.
- W4285190744 hasConcept C119857082 @default.
- W4285190744 hasConcept C124101348 @default.
- W4285190744 hasConcept C138885662 @default.
- W4285190744 hasConcept C144024400 @default.
- W4285190744 hasConcept C153180895 @default.
- W4285190744 hasConcept C154945302 @default.
- W4285190744 hasConcept C178790620 @default.
- W4285190744 hasConcept C185592680 @default.
- W4285190744 hasConcept C204030448 @default.
- W4285190744 hasConcept C2776401178 @default.
- W4285190744 hasConcept C2779903281 @default.
- W4285190744 hasConcept C2780226545 @default.
- W4285190744 hasConcept C36289849 @default.
- W4285190744 hasConcept C41008148 @default.
- W4285190744 hasConcept C41895202 @default.
- W4285190744 hasConcept C98045186 @default.
- W4285190744 hasConceptScore W4285190744C111919701 @default.
- W4285190744 hasConceptScore W4285190744C119857082 @default.
- W4285190744 hasConceptScore W4285190744C124101348 @default.
- W4285190744 hasConceptScore W4285190744C138885662 @default.