Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285390431> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4285390431 endingPage "153" @default.
- W4285390431 startingPage "132" @default.
- W4285390431 abstract "The Philippines is one of the fastest urbanizing countries in the East Asia and Pacific region (Baker & Watanabe, 2017). Despite having its advantages, urbanization still has its challenges that require extensive urban management and development programs for it to be prevented and minimized. In this paper, the researchers forecasted the urban population growth of the Philippines using the Autoregressive Integrated Moving Average (ARIMA) Model. The historical data obtained from the World Bank Group was from 1960 to 2020. The R Programming Language was used as the medium for the entire forecasting process. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots, Augmented Dickey-Fuller (ADF) test, Phillips-Perron (PP) test, and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test were used for testing the stationarity of the time-series data. Moreover, Akaike Information Criteria (AIC), Corrected Akaike Information Criterion (AICc), and Schwarz Information Criteria (SIC) were used as criteria for selecting the best ARIMA model. It was shown that the best ARIMA model for forecasting the urban population growth of the country is ARIMA (20, 1, 10). This model has been formulated and chosen through the mentioned statistical tests, and criteria for validation, and was further validated using error measures. The chosen ARIMA model was proven to be accurate based on the Root Mean Square Error (RMSE) of 0.18877 and the Mean Absolute Percentage Error (MAPE) of 3.71%. The researchers found an increase in the trend of 1.95% by 2022, 2.08% by 2024, 2.19% by 2026, and 2.36% by 2028. This potential rise in urban population growth in the Philippines may improve the economy of the country for the next 6 years, but this could also imply that the underlying issues of urbanization may get worse. The researchers conclude that the Philippine national government and local government units should have better and strengthened urban management and development programs to aid these problems. Government officials and even private sectors may use this paper as a reference to have an informed decision and policy-making. KEYWORDS: Autoregressive Integrated Moving Average (ARIMA) Model, Box-Jenkins Method, Urbanization, Urban Population Growth, Forecast, R Programming Language" @default.
- W4285390431 created "2022-07-14" @default.
- W4285390431 creator A5017114020 @default.
- W4285390431 creator A5032203805 @default.
- W4285390431 creator A5034359635 @default.
- W4285390431 creator A5039392586 @default.
- W4285390431 date "2022-07-14" @default.
- W4285390431 modified "2023-09-30" @default.
- W4285390431 title "FORECASTING URBAN POPULATION GROWTH IN THE PHILIPPINES USING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODEL" @default.
- W4285390431 doi "https://doi.org/10.36713/epra10819" @default.
- W4285390431 hasPublicationYear "2022" @default.
- W4285390431 type Work @default.
- W4285390431 citedByCount "0" @default.
- W4285390431 crossrefType "journal-article" @default.
- W4285390431 hasAuthorship W4285390431A5017114020 @default.
- W4285390431 hasAuthorship W4285390431A5032203805 @default.
- W4285390431 hasAuthorship W4285390431A5034359635 @default.
- W4285390431 hasAuthorship W4285390431A5039392586 @default.
- W4285390431 hasBestOaLocation W42853904311 @default.
- W4285390431 hasConcept C105795698 @default.
- W4285390431 hasConcept C114775468 @default.
- W4285390431 hasConcept C126674687 @default.
- W4285390431 hasConcept C139945424 @default.
- W4285390431 hasConcept C144024400 @default.
- W4285390431 hasConcept C145162277 @default.
- W4285390431 hasConcept C149782125 @default.
- W4285390431 hasConcept C149923435 @default.
- W4285390431 hasConcept C150217764 @default.
- W4285390431 hasConcept C151406439 @default.
- W4285390431 hasConcept C159877910 @default.
- W4285390431 hasConcept C24338571 @default.
- W4285390431 hasConcept C2908647359 @default.
- W4285390431 hasConcept C33923547 @default.
- W4285390431 hasConcept C5297727 @default.
- W4285390431 hasConcept C82257358 @default.
- W4285390431 hasConceptScore W4285390431C105795698 @default.
- W4285390431 hasConceptScore W4285390431C114775468 @default.
- W4285390431 hasConceptScore W4285390431C126674687 @default.
- W4285390431 hasConceptScore W4285390431C139945424 @default.
- W4285390431 hasConceptScore W4285390431C144024400 @default.
- W4285390431 hasConceptScore W4285390431C145162277 @default.
- W4285390431 hasConceptScore W4285390431C149782125 @default.
- W4285390431 hasConceptScore W4285390431C149923435 @default.
- W4285390431 hasConceptScore W4285390431C150217764 @default.
- W4285390431 hasConceptScore W4285390431C151406439 @default.
- W4285390431 hasConceptScore W4285390431C159877910 @default.
- W4285390431 hasConceptScore W4285390431C24338571 @default.
- W4285390431 hasConceptScore W4285390431C2908647359 @default.
- W4285390431 hasConceptScore W4285390431C33923547 @default.
- W4285390431 hasConceptScore W4285390431C5297727 @default.
- W4285390431 hasConceptScore W4285390431C82257358 @default.
- W4285390431 hasLocation W42853904311 @default.
- W4285390431 hasOpenAccess W4285390431 @default.
- W4285390431 hasPrimaryLocation W42853904311 @default.
- W4285390431 hasRelatedWork W2033412785 @default.
- W4285390431 hasRelatedWork W2061377831 @default.
- W4285390431 hasRelatedWork W2549718524 @default.
- W4285390431 hasRelatedWork W2891245103 @default.
- W4285390431 hasRelatedWork W3022602962 @default.
- W4285390431 hasRelatedWork W3082735596 @default.
- W4285390431 hasRelatedWork W3088055294 @default.
- W4285390431 hasRelatedWork W3138648104 @default.
- W4285390431 hasRelatedWork W4285390431 @default.
- W4285390431 hasRelatedWork W2276113337 @default.
- W4285390431 isParatext "false" @default.
- W4285390431 isRetracted "false" @default.
- W4285390431 workType "article" @default.