Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287704778> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4287704778 abstract "Predictive clustering trees (PCTs) are a well established generalization of standard decision trees, which can be used to solve a variety of predictive modeling tasks, including structured output prediction. Combining them into ensembles yields state-of-the-art performance. Furthermore, the ensembles of PCTs can be interpreted by calculating feature importance scores from the learned models. However, their learning time scales poorly with the dimensionality of the output space. This is often problematic, especially in (hierarchical) multi-label classification, where the output can consist of hundreds of potential labels. Also, learning of PCTs can not exploit the sparsity of data to improve the computational efficiency, which is common in both input (molecular fingerprints, bag of words representations) and output spaces (in multi-label classification, examples are often labeled with only a fraction of possible labels). In this paper, we propose oblique predictive clustering trees, capable of addressing these limitations. We design and implement two methods for learning oblique splits that contain linear combinations of features in the tests, hence a split corresponds to an arbitrary hyperplane in the input space. The methods are efficient for high dimensional data and capable of exploiting sparse data. We experimentally evaluate the proposed methods on 60 benchmark datasets for 6 predictive modeling tasks. The results of the experiments show that oblique predictive clustering trees achieve performance on-par with state-of-the-art methods and are orders of magnitude faster than standard PCTs. We also show that meaningful feature importance scores can be extracted from the models learned with the proposed methods." @default.
- W4287704778 created "2022-07-26" @default.
- W4287704778 creator A5004076545 @default.
- W4287704778 creator A5064030847 @default.
- W4287704778 date "2020-07-27" @default.
- W4287704778 modified "2023-09-23" @default.
- W4287704778 title "Oblique Predictive Clustering Trees" @default.
- W4287704778 doi "https://doi.org/10.48550/arxiv.2007.13617" @default.
- W4287704778 hasPublicationYear "2020" @default.
- W4287704778 type Work @default.
- W4287704778 citedByCount "0" @default.
- W4287704778 crossrefType "posted-content" @default.
- W4287704778 hasAuthorship W4287704778A5004076545 @default.
- W4287704778 hasAuthorship W4287704778A5064030847 @default.
- W4287704778 hasBestOaLocation W42877047781 @default.
- W4287704778 hasConcept C111030470 @default.
- W4287704778 hasConcept C113174947 @default.
- W4287704778 hasConcept C119857082 @default.
- W4287704778 hasConcept C124101348 @default.
- W4287704778 hasConcept C13280743 @default.
- W4287704778 hasConcept C134306372 @default.
- W4287704778 hasConcept C138885662 @default.
- W4287704778 hasConcept C153180895 @default.
- W4287704778 hasConcept C154945302 @default.
- W4287704778 hasConcept C160697094 @default.
- W4287704778 hasConcept C177148314 @default.
- W4287704778 hasConcept C185798385 @default.
- W4287704778 hasConcept C205649164 @default.
- W4287704778 hasConcept C2524010 @default.
- W4287704778 hasConcept C2776401178 @default.
- W4287704778 hasConcept C33923547 @default.
- W4287704778 hasConcept C41008148 @default.
- W4287704778 hasConcept C41895202 @default.
- W4287704778 hasConcept C68693459 @default.
- W4287704778 hasConcept C73555534 @default.
- W4287704778 hasConcept C83665646 @default.
- W4287704778 hasConcept C84525736 @default.
- W4287704778 hasConceptScore W4287704778C111030470 @default.
- W4287704778 hasConceptScore W4287704778C113174947 @default.
- W4287704778 hasConceptScore W4287704778C119857082 @default.
- W4287704778 hasConceptScore W4287704778C124101348 @default.
- W4287704778 hasConceptScore W4287704778C13280743 @default.
- W4287704778 hasConceptScore W4287704778C134306372 @default.
- W4287704778 hasConceptScore W4287704778C138885662 @default.
- W4287704778 hasConceptScore W4287704778C153180895 @default.
- W4287704778 hasConceptScore W4287704778C154945302 @default.
- W4287704778 hasConceptScore W4287704778C160697094 @default.
- W4287704778 hasConceptScore W4287704778C177148314 @default.
- W4287704778 hasConceptScore W4287704778C185798385 @default.
- W4287704778 hasConceptScore W4287704778C205649164 @default.
- W4287704778 hasConceptScore W4287704778C2524010 @default.
- W4287704778 hasConceptScore W4287704778C2776401178 @default.
- W4287704778 hasConceptScore W4287704778C33923547 @default.
- W4287704778 hasConceptScore W4287704778C41008148 @default.
- W4287704778 hasConceptScore W4287704778C41895202 @default.
- W4287704778 hasConceptScore W4287704778C68693459 @default.
- W4287704778 hasConceptScore W4287704778C73555534 @default.
- W4287704778 hasConceptScore W4287704778C83665646 @default.
- W4287704778 hasConceptScore W4287704778C84525736 @default.
- W4287704778 hasLocation W42877047781 @default.
- W4287704778 hasOpenAccess W4287704778 @default.
- W4287704778 hasPrimaryLocation W42877047781 @default.
- W4287704778 hasRelatedWork W1972370106 @default.
- W4287704778 hasRelatedWork W2036586713 @default.
- W4287704778 hasRelatedWork W2052253960 @default.
- W4287704778 hasRelatedWork W2053724255 @default.
- W4287704778 hasRelatedWork W2105484761 @default.
- W4287704778 hasRelatedWork W2147802381 @default.
- W4287704778 hasRelatedWork W2170421781 @default.
- W4287704778 hasRelatedWork W3017161237 @default.
- W4287704778 hasRelatedWork W3197541072 @default.
- W4287704778 hasRelatedWork W2480412556 @default.
- W4287704778 isParatext "false" @default.
- W4287704778 isRetracted "false" @default.
- W4287704778 workType "article" @default.