Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291196961> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4291196961 endingPage "447" @default.
- W4291196961 startingPage "445" @default.
- W4291196961 abstract "The purpose of this study was to compare the performance of an artificial intelligence (AI) solution to that of a senior general radiologist for bone age assessment.Anteroposterior hand radiographs of eight boys and eight girls from each age interval between five and 17 year-old from four different radiology departments were retrospectively collected. Two board-certified pediatric radiologists with knowledge of the sex and chronological age of the patients independently estimated the Greulich and Pyle bone age to determine the standard of reference. A senior general radiologist not specialized in pediatric radiology (further referred to as “the reader”) then determined the bone age with knowledge of the sex and chronological age. The results of the reader were then compared to those of the AI solution using mean absolute error (MAE) in age estimation.The study dataset included a total of 206 patients (102 boys of mean chronological age of 10.9 ± 3.7 [SD] years, 104 girls of mean chronological age of 11 ± 3.7 [SD] years). For both sexes, the AI algorithm showed a significantly lower MAE than the reader (P < 0.007). In boys, the MAE was 0.488 years (95% confidence interval [CI]: 0.28–0.44; r2 = 0.978) for the AI algorithm and 0.771 years (95% CI: 0.64–0.90; r2 = 0.94) for the reader. In girls, the MAE was 0.494 years (95% CI: 0.41–0.56; r2 = 0.973) for the AI algorithm and 0.673 years (95% CI: 0.54–0.81; r2 = 0.934) for the reader.The AI solution better estimates the Greulich and Pyle bone age than a general radiologist does." @default.
- W4291196961 created "2022-08-13" @default.
- W4291196961 creator A5016194351 @default.
- W4291196961 creator A5043606838 @default.
- W4291196961 creator A5067187971 @default.
- W4291196961 creator A5079743568 @default.
- W4291196961 creator A5089984534 @default.
- W4291196961 date "2022-10-01" @default.
- W4291196961 modified "2023-10-15" @default.
- W4291196961 title "Does artificial intelligence surpass the radiologist?" @default.
- W4291196961 cites W3003161132 @default.
- W4291196961 cites W3013798436 @default.
- W4291196961 cites W3046896154 @default.
- W4291196961 cites W3092018978 @default.
- W4291196961 cites W3097447949 @default.
- W4291196961 cites W3105959757 @default.
- W4291196961 cites W3127382155 @default.
- W4291196961 cites W3169606919 @default.
- W4291196961 cites W3217170893 @default.
- W4291196961 cites W4200013359 @default.
- W4291196961 cites W4200319345 @default.
- W4291196961 cites W4206723468 @default.
- W4291196961 cites W4210907741 @default.
- W4291196961 cites W4280614744 @default.
- W4291196961 cites W4283693809 @default.
- W4291196961 doi "https://doi.org/10.1016/j.diii.2022.08.001" @default.
- W4291196961 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35973913" @default.
- W4291196961 hasPublicationYear "2022" @default.
- W4291196961 type Work @default.
- W4291196961 citedByCount "22" @default.
- W4291196961 countsByYear W42911969612022 @default.
- W4291196961 countsByYear W42911969612023 @default.
- W4291196961 crossrefType "journal-article" @default.
- W4291196961 hasAuthorship W4291196961A5016194351 @default.
- W4291196961 hasAuthorship W4291196961A5043606838 @default.
- W4291196961 hasAuthorship W4291196961A5067187971 @default.
- W4291196961 hasAuthorship W4291196961A5079743568 @default.
- W4291196961 hasAuthorship W4291196961A5089984534 @default.
- W4291196961 hasBestOaLocation W42911969611 @default.
- W4291196961 hasConcept C126322002 @default.
- W4291196961 hasConcept C126838900 @default.
- W4291196961 hasConcept C187212893 @default.
- W4291196961 hasConcept C2989005 @default.
- W4291196961 hasConcept C36454342 @default.
- W4291196961 hasConcept C44249647 @default.
- W4291196961 hasConcept C71924100 @default.
- W4291196961 hasConcept C89551170 @default.
- W4291196961 hasConceptScore W4291196961C126322002 @default.
- W4291196961 hasConceptScore W4291196961C126838900 @default.
- W4291196961 hasConceptScore W4291196961C187212893 @default.
- W4291196961 hasConceptScore W4291196961C2989005 @default.
- W4291196961 hasConceptScore W4291196961C36454342 @default.
- W4291196961 hasConceptScore W4291196961C44249647 @default.
- W4291196961 hasConceptScore W4291196961C71924100 @default.
- W4291196961 hasConceptScore W4291196961C89551170 @default.
- W4291196961 hasIssue "10" @default.
- W4291196961 hasLocation W42911969611 @default.
- W4291196961 hasLocation W42911969612 @default.
- W4291196961 hasOpenAccess W4291196961 @default.
- W4291196961 hasPrimaryLocation W42911969611 @default.
- W4291196961 hasRelatedWork W1976981864 @default.
- W4291196961 hasRelatedWork W2061761887 @default.
- W4291196961 hasRelatedWork W2068327088 @default.
- W4291196961 hasRelatedWork W2187699143 @default.
- W4291196961 hasRelatedWork W2209603847 @default.
- W4291196961 hasRelatedWork W2326730557 @default.
- W4291196961 hasRelatedWork W2897589971 @default.
- W4291196961 hasRelatedWork W2957862417 @default.
- W4291196961 hasRelatedWork W3013910912 @default.
- W4291196961 hasRelatedWork W4309644067 @default.
- W4291196961 hasVolume "103" @default.
- W4291196961 isParatext "false" @default.
- W4291196961 isRetracted "false" @default.
- W4291196961 workType "article" @default.