Matches in SemOpenAlex for { <https://semopenalex.org/work/W4296817080> ?p ?o ?g. }
- W4296817080 abstract "Deep learning (DL) framework is gradually applied to solve the problem of DOA estimation in array signal processing. DL-based DOA estimation methods are much more efficient than conventional model-based methods in the testing stage. However, the generalization of DL-based methods is limited in the presence of array phase errors, because array phase errors may change in different environments, leading to the difference between the phase errors in the training and the ones in testing. In this paper, we explore the magnitude property of array received signal to develop robust deep neural network (DNN)-based framework for DOA estimation, named as magnitude-based DNN method (shorten as MDNN). The proposed MDNN method performs independently of array phase errors and enjoys a simpler network than the original DNN method. Simulation results in different scenarios demonstrate that the MDNN method behaves much more robust to array phase errors than the original DNN-based method." @default.
- W4296817080 created "2022-09-24" @default.
- W4296817080 creator A5022593281 @default.
- W4296817080 creator A5036191622 @default.
- W4296817080 creator A5067435449 @default.
- W4296817080 date "2022-09-01" @default.
- W4296817080 modified "2023-09-30" @default.
- W4296817080 title "Robust DOA Estimation Based on Deep Neural Networks in Presence of Array Phase Errors" @default.
- W4296817080 cites W1792675773 @default.
- W4296817080 cites W2005602327 @default.
- W4296817080 cites W2066218102 @default.
- W4296817080 cites W2080515327 @default.
- W4296817080 cites W2098130138 @default.
- W4296817080 cites W2101658087 @default.
- W4296817080 cites W2102038734 @default.
- W4296817080 cites W2103519107 @default.
- W4296817080 cites W2110789499 @default.
- W4296817080 cites W2113638573 @default.
- W4296817080 cites W2117345021 @default.
- W4296817080 cites W2118632219 @default.
- W4296817080 cites W2126150608 @default.
- W4296817080 cites W2128131274 @default.
- W4296817080 cites W2134873712 @default.
- W4296817080 cites W2140410274 @default.
- W4296817080 cites W2140728947 @default.
- W4296817080 cites W2147421007 @default.
- W4296817080 cites W2159530033 @default.
- W4296817080 cites W2162654459 @default.
- W4296817080 cites W2528695050 @default.
- W4296817080 cites W2897361856 @default.
- W4296817080 cites W2903096411 @default.
- W4296817080 cites W2919115771 @default.
- W4296817080 cites W2978977033 @default.
- W4296817080 cites W2996722594 @default.
- W4296817080 cites W3013302814 @default.
- W4296817080 cites W3046964793 @default.
- W4296817080 cites W3104690928 @default.
- W4296817080 cites W4211084947 @default.
- W4296817080 doi "https://doi.org/10.1109/sspd54131.2022.9896221" @default.
- W4296817080 hasPublicationYear "2022" @default.
- W4296817080 type Work @default.
- W4296817080 citedByCount "1" @default.
- W4296817080 countsByYear W42968170802023 @default.
- W4296817080 crossrefType "proceedings-article" @default.
- W4296817080 hasAuthorship W4296817080A5022593281 @default.
- W4296817080 hasAuthorship W4296817080A5036191622 @default.
- W4296817080 hasAuthorship W4296817080A5067435449 @default.
- W4296817080 hasConcept C104267543 @default.
- W4296817080 hasConcept C111472728 @default.
- W4296817080 hasConcept C11413529 @default.
- W4296817080 hasConcept C134306372 @default.
- W4296817080 hasConcept C138885662 @default.
- W4296817080 hasConcept C153180895 @default.
- W4296817080 hasConcept C154945302 @default.
- W4296817080 hasConcept C177148314 @default.
- W4296817080 hasConcept C178790620 @default.
- W4296817080 hasConcept C185592680 @default.
- W4296817080 hasConcept C189950617 @default.
- W4296817080 hasConcept C199360897 @default.
- W4296817080 hasConcept C2778545087 @default.
- W4296817080 hasConcept C2779843651 @default.
- W4296817080 hasConcept C33923547 @default.
- W4296817080 hasConcept C41008148 @default.
- W4296817080 hasConcept C44280652 @default.
- W4296817080 hasConcept C50644808 @default.
- W4296817080 hasConcept C554190296 @default.
- W4296817080 hasConcept C76155785 @default.
- W4296817080 hasConceptScore W4296817080C104267543 @default.
- W4296817080 hasConceptScore W4296817080C111472728 @default.
- W4296817080 hasConceptScore W4296817080C11413529 @default.
- W4296817080 hasConceptScore W4296817080C134306372 @default.
- W4296817080 hasConceptScore W4296817080C138885662 @default.
- W4296817080 hasConceptScore W4296817080C153180895 @default.
- W4296817080 hasConceptScore W4296817080C154945302 @default.
- W4296817080 hasConceptScore W4296817080C177148314 @default.
- W4296817080 hasConceptScore W4296817080C178790620 @default.
- W4296817080 hasConceptScore W4296817080C185592680 @default.
- W4296817080 hasConceptScore W4296817080C189950617 @default.
- W4296817080 hasConceptScore W4296817080C199360897 @default.
- W4296817080 hasConceptScore W4296817080C2778545087 @default.
- W4296817080 hasConceptScore W4296817080C2779843651 @default.
- W4296817080 hasConceptScore W4296817080C33923547 @default.
- W4296817080 hasConceptScore W4296817080C41008148 @default.
- W4296817080 hasConceptScore W4296817080C44280652 @default.
- W4296817080 hasConceptScore W4296817080C50644808 @default.
- W4296817080 hasConceptScore W4296817080C554190296 @default.
- W4296817080 hasConceptScore W4296817080C76155785 @default.
- W4296817080 hasFunder F4320335787 @default.
- W4296817080 hasLocation W42968170801 @default.
- W4296817080 hasOpenAccess W4296817080 @default.
- W4296817080 hasPrimaryLocation W42968170801 @default.
- W4296817080 hasRelatedWork W1971541091 @default.
- W4296817080 hasRelatedWork W2367713677 @default.
- W4296817080 hasRelatedWork W2372289389 @default.
- W4296817080 hasRelatedWork W2382408216 @default.
- W4296817080 hasRelatedWork W2386215904 @default.
- W4296817080 hasRelatedWork W2386387936 @default.
- W4296817080 hasRelatedWork W2394314692 @default.
- W4296817080 hasRelatedWork W2885094885 @default.
- W4296817080 hasRelatedWork W3191700893 @default.