Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297361163> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4297361163 endingPage "100421" @default.
- W4297361163 startingPage "100421" @default.
- W4297361163 abstract "Knowledge discovery and data mining are fast growing fields of study that span a variety of disciplines, including distributed systems, databases, artificial intelligence, visualization, statistics, high-performance computing, and parallel computing. Raw data is collected by people in business, science, medicine, academia, and government, and there are various commercial programmes that process the data to provide general and specific purpose knowledge discovery. “Turn Data into Knowledge” is an important goal in knowledge discovery and data mining. Data mining is the process of examining data previously stored in databases in order to solve problems. The technique of detecting patterns in vast data repositories is known as data mining. In order to complete a data mining task, effective exploratory strategies are always required. Association rules, correlations, sequential patterns, classification, clustering, and other data mining techniques are only a few examples. Every technique has its own value, which is determined by the application area and challenges for which it is used. The objectives of this study, as stated in the synopsis, are met using association rule mining methodology. The original motivation for association rules mining was the problem of supermarket transaction data. The problem with supermarket transaction data is that it is used to investigate client purchasing habits. The frequency with which things have been purchased together is described by association rules. For instance, the association rule “cool drink=> chips (80%) implies that 80% of customers who purchase cool drink also purchase chips. Such criteria can be beneficial in making judgments about store layout, product pricing, and marketing, among other things." @default.
- W4297361163 created "2022-09-28" @default.
- W4297361163 creator A5029185466 @default.
- W4297361163 creator A5048185655 @default.
- W4297361163 date "2022-12-01" @default.
- W4297361163 modified "2023-10-18" @default.
- W4297361163 title "Pattern mining algorithms for data streams using itemset" @default.
- W4297361163 cites W2091866617 @default.
- W4297361163 doi "https://doi.org/10.1016/j.measen.2022.100421" @default.
- W4297361163 hasPublicationYear "2022" @default.
- W4297361163 type Work @default.
- W4297361163 citedByCount "1" @default.
- W4297361163 crossrefType "journal-article" @default.
- W4297361163 hasAuthorship W4297361163A5029185466 @default.
- W4297361163 hasAuthorship W4297361163A5048185655 @default.
- W4297361163 hasBestOaLocation W42973611631 @default.
- W4297361163 hasConcept C111919701 @default.
- W4297361163 hasConcept C119857082 @default.
- W4297361163 hasConcept C120567893 @default.
- W4297361163 hasConcept C124101348 @default.
- W4297361163 hasConcept C127413603 @default.
- W4297361163 hasConcept C127722929 @default.
- W4297361163 hasConcept C132964779 @default.
- W4297361163 hasConcept C135572916 @default.
- W4297361163 hasConcept C193524817 @default.
- W4297361163 hasConcept C199360897 @default.
- W4297361163 hasConcept C21547014 @default.
- W4297361163 hasConcept C23906176 @default.
- W4297361163 hasConcept C2522767166 @default.
- W4297361163 hasConcept C2778813691 @default.
- W4297361163 hasConcept C41008148 @default.
- W4297361163 hasConcept C73555534 @default.
- W4297361163 hasConcept C75949130 @default.
- W4297361163 hasConcept C77088390 @default.
- W4297361163 hasConcept C81440476 @default.
- W4297361163 hasConcept C89198739 @default.
- W4297361163 hasConcept C98045186 @default.
- W4297361163 hasConceptScore W4297361163C111919701 @default.
- W4297361163 hasConceptScore W4297361163C119857082 @default.
- W4297361163 hasConceptScore W4297361163C120567893 @default.
- W4297361163 hasConceptScore W4297361163C124101348 @default.
- W4297361163 hasConceptScore W4297361163C127413603 @default.
- W4297361163 hasConceptScore W4297361163C127722929 @default.
- W4297361163 hasConceptScore W4297361163C132964779 @default.
- W4297361163 hasConceptScore W4297361163C135572916 @default.
- W4297361163 hasConceptScore W4297361163C193524817 @default.
- W4297361163 hasConceptScore W4297361163C199360897 @default.
- W4297361163 hasConceptScore W4297361163C21547014 @default.
- W4297361163 hasConceptScore W4297361163C23906176 @default.
- W4297361163 hasConceptScore W4297361163C2522767166 @default.
- W4297361163 hasConceptScore W4297361163C2778813691 @default.
- W4297361163 hasConceptScore W4297361163C41008148 @default.
- W4297361163 hasConceptScore W4297361163C73555534 @default.
- W4297361163 hasConceptScore W4297361163C75949130 @default.
- W4297361163 hasConceptScore W4297361163C77088390 @default.
- W4297361163 hasConceptScore W4297361163C81440476 @default.
- W4297361163 hasConceptScore W4297361163C89198739 @default.
- W4297361163 hasConceptScore W4297361163C98045186 @default.
- W4297361163 hasLocation W42973611631 @default.
- W4297361163 hasOpenAccess W4297361163 @default.
- W4297361163 hasPrimaryLocation W42973611631 @default.
- W4297361163 hasRelatedWork W2327153543 @default.
- W4297361163 hasRelatedWork W2366073908 @default.
- W4297361163 hasRelatedWork W2888770363 @default.
- W4297361163 hasRelatedWork W3036124657 @default.
- W4297361163 hasRelatedWork W4213049829 @default.
- W4297361163 hasRelatedWork W4230296930 @default.
- W4297361163 hasRelatedWork W4283765261 @default.
- W4297361163 hasRelatedWork W4297361163 @default.
- W4297361163 hasRelatedWork W2405429603 @default.
- W4297361163 hasRelatedWork W2464616435 @default.
- W4297361163 hasVolume "24" @default.
- W4297361163 isParatext "false" @default.
- W4297361163 isRetracted "false" @default.
- W4297361163 workType "article" @default.