Matches in SemOpenAlex for { <https://semopenalex.org/work/W4300980908> ?p ?o ?g. }
- W4300980908 endingPage "105361" @default.
- W4300980908 startingPage "105361" @default.
- W4300980908 abstract "This study aims to investigate the measurement parameters for predicting the electric energy consumption of residential buildings using a data-driven model. Herein, the temporal resolution of data and algorithms that can improve prediction accuracy are comparatively investigated. For the investigation, the time units of the data collected from the monitoring system of an actual residential building are set as 10 min and 1 h. Further, algorithms such as multiple linear regression (MLR), multilayer perceptron (MLP), support vector machine (SVM), and random forest (RF) are employed to predict the electric energy consumption of the building. The parameters of the data collection include electric energy consumption based on the usage type, occupancy information, and indoor environmental information. The model is validated using a K-fold technique, and the prediction accuracy is compared using R 2 and the t -value. Analyses using seven input variables reveal that the prediction accuracy for the 1 h interval data is better than that for the 10 min interval data, based on the temporal resolution of the data. In addition, the results of the algorithms reveal that the prediction accuracy is the highest when the MLR algorithm is used, followed by those when using the RF, MLP, and SVM algorithms. A relatively simple statistical method and low-resolution data rather than a complex machine learning algorithm or high-resolution data achieved the best prediction accuracy. These results are expected to facilitate high-accuracy predictions of the electric energy consumption of residential buildings. • Predictions of residential energy consumption were studied using a data-driven model. • Energy consumption information was measured and collected in a residential building. • The collected data were usage type, occupancy, and indoor environmental information. • The prediction accuracy is compared based on temporal resolutions and algorithms. • These results will be useful for the energy management of residential buildings." @default.
- W4300980908 created "2022-10-04" @default.
- W4300980908 creator A5000548365 @default.
- W4300980908 creator A5017492313 @default.
- W4300980908 creator A5037945432 @default.
- W4300980908 creator A5091554389 @default.
- W4300980908 date "2022-12-01" @default.
- W4300980908 modified "2023-10-06" @default.
- W4300980908 title "Electric energy consumption predictions for residential buildings: Impact of data-driven model and temporal resolution on prediction accuracy" @default.
- W4300980908 cites W1619614355 @default.
- W4300980908 cites W1967090386 @default.
- W4300980908 cites W1979054274 @default.
- W4300980908 cites W1997334587 @default.
- W4300980908 cites W2015813591 @default.
- W4300980908 cites W2022123797 @default.
- W4300980908 cites W2036771008 @default.
- W4300980908 cites W2036887984 @default.
- W4300980908 cites W2039813705 @default.
- W4300980908 cites W2051607409 @default.
- W4300980908 cites W2064469609 @default.
- W4300980908 cites W2075604548 @default.
- W4300980908 cites W2083260294 @default.
- W4300980908 cites W2099118264 @default.
- W4300980908 cites W2111909511 @default.
- W4300980908 cites W2345860230 @default.
- W4300980908 cites W2413163873 @default.
- W4300980908 cites W2529742705 @default.
- W4300980908 cites W2560599441 @default.
- W4300980908 cites W2585502432 @default.
- W4300980908 cites W2586259521 @default.
- W4300980908 cites W2605614336 @default.
- W4300980908 cites W2734545837 @default.
- W4300980908 cites W2754029504 @default.
- W4300980908 cites W2761146210 @default.
- W4300980908 cites W2810844146 @default.
- W4300980908 cites W2898334667 @default.
- W4300980908 cites W2920901284 @default.
- W4300980908 cites W2937280260 @default.
- W4300980908 cites W2940410650 @default.
- W4300980908 cites W2943921667 @default.
- W4300980908 cites W2964434295 @default.
- W4300980908 cites W2994209110 @default.
- W4300980908 cites W3021900882 @default.
- W4300980908 cites W3095427017 @default.
- W4300980908 cites W3186501415 @default.
- W4300980908 cites W3211737832 @default.
- W4300980908 cites W3217470798 @default.
- W4300980908 cites W4200229236 @default.
- W4300980908 cites W4200625063 @default.
- W4300980908 cites W4211076903 @default.
- W4300980908 doi "https://doi.org/10.1016/j.jobe.2022.105361" @default.
- W4300980908 hasPublicationYear "2022" @default.
- W4300980908 type Work @default.
- W4300980908 citedByCount "4" @default.
- W4300980908 countsByYear W43009809082023 @default.
- W4300980908 crossrefType "journal-article" @default.
- W4300980908 hasAuthorship W4300980908A5000548365 @default.
- W4300980908 hasAuthorship W4300980908A5017492313 @default.
- W4300980908 hasAuthorship W4300980908A5037945432 @default.
- W4300980908 hasAuthorship W4300980908A5091554389 @default.
- W4300980908 hasConcept C105795698 @default.
- W4300980908 hasConcept C119599485 @default.
- W4300980908 hasConcept C119857082 @default.
- W4300980908 hasConcept C121332964 @default.
- W4300980908 hasConcept C127413603 @default.
- W4300980908 hasConcept C144024400 @default.
- W4300980908 hasConcept C160331591 @default.
- W4300980908 hasConcept C163258240 @default.
- W4300980908 hasConcept C170154142 @default.
- W4300980908 hasConcept C171146098 @default.
- W4300980908 hasConcept C186370098 @default.
- W4300980908 hasConcept C2779027077 @default.
- W4300980908 hasConcept C2780165032 @default.
- W4300980908 hasConcept C29592376 @default.
- W4300980908 hasConcept C30772137 @default.
- W4300980908 hasConcept C33923547 @default.
- W4300980908 hasConcept C36289849 @default.
- W4300980908 hasConcept C39432304 @default.
- W4300980908 hasConcept C41008148 @default.
- W4300980908 hasConcept C45804977 @default.
- W4300980908 hasConcept C62520636 @default.
- W4300980908 hasConceptScore W4300980908C105795698 @default.
- W4300980908 hasConceptScore W4300980908C119599485 @default.
- W4300980908 hasConceptScore W4300980908C119857082 @default.
- W4300980908 hasConceptScore W4300980908C121332964 @default.
- W4300980908 hasConceptScore W4300980908C127413603 @default.
- W4300980908 hasConceptScore W4300980908C144024400 @default.
- W4300980908 hasConceptScore W4300980908C160331591 @default.
- W4300980908 hasConceptScore W4300980908C163258240 @default.
- W4300980908 hasConceptScore W4300980908C170154142 @default.
- W4300980908 hasConceptScore W4300980908C171146098 @default.
- W4300980908 hasConceptScore W4300980908C186370098 @default.
- W4300980908 hasConceptScore W4300980908C2779027077 @default.
- W4300980908 hasConceptScore W4300980908C2780165032 @default.
- W4300980908 hasConceptScore W4300980908C29592376 @default.
- W4300980908 hasConceptScore W4300980908C30772137 @default.
- W4300980908 hasConceptScore W4300980908C33923547 @default.
- W4300980908 hasConceptScore W4300980908C36289849 @default.