Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306174805> ?p ?o ?g. }
- W4306174805 endingPage "105345" @default.
- W4306174805 startingPage "105345" @default.
- W4306174805 abstract "Alternative splicing is crucial for a wide range of biological processes. However, limited by the availability of reference genomes, genome-wide patterns of alternative splicing remain unknown in most nonmodel organisms. We present an attention-based convolutional neural network model, DeepASmRNA, for predicting alternative splicing events using only transcriptomic data. DeepASmRNA consists of two parts: identification of alternatively spliced transcripts and classification of alternative splicing events, which outperformed the state-of-the-art method, AStrap, and other deep learning models. Then, we utilize transfer learning to increase the performance in species with limited training data and use an interpretation method to decipher splicing codes. Finally, applying Amborella, DeepASmRNA can identify more AS events than AStrap while maintaining the same level of precision, suggesting that DeepASmRNA has superior sensitivity to identify alternative splicing events. In summary, DeepASmRNA is scalable and interpretable for detecting genome-wide patterns of alternative splicing in species without a reference genome." @default.
- W4306174805 created "2022-10-14" @default.
- W4306174805 creator A5046995251 @default.
- W4306174805 creator A5050208449 @default.
- W4306174805 creator A5069756468 @default.
- W4306174805 creator A5077099452 @default.
- W4306174805 creator A5083940447 @default.
- W4306174805 date "2022-11-01" @default.
- W4306174805 modified "2023-10-01" @default.
- W4306174805 title "DeepASmRNA: Reference-free prediction of alternative splicing events with a scalable and interpretable deep learning model" @default.
- W4306174805 cites W1494075612 @default.
- W4306174805 cites W1689711448 @default.
- W4306174805 cites W1759605135 @default.
- W4306174805 cites W1968569455 @default.
- W4306174805 cites W1981509058 @default.
- W4306174805 cites W2011920499 @default.
- W4306174805 cites W2040481343 @default.
- W4306174805 cites W2048120844 @default.
- W4306174805 cites W2055043387 @default.
- W4306174805 cites W2058378183 @default.
- W4306174805 cites W2088338354 @default.
- W4306174805 cites W2105434771 @default.
- W4306174805 cites W2106678197 @default.
- W4306174805 cites W2108218546 @default.
- W4306174805 cites W2112796928 @default.
- W4306174805 cites W2137986897 @default.
- W4306174805 cites W2138098955 @default.
- W4306174805 cites W2153833484 @default.
- W4306174805 cites W2155804510 @default.
- W4306174805 cites W2160391145 @default.
- W4306174805 cites W2165698076 @default.
- W4306174805 cites W2167432290 @default.
- W4306174805 cites W2211192759 @default.
- W4306174805 cites W2341861303 @default.
- W4306174805 cites W2597262405 @default.
- W4306174805 cites W2737196618 @default.
- W4306174805 cites W2898283559 @default.
- W4306174805 cites W2904596341 @default.
- W4306174805 cites W2909194804 @default.
- W4306174805 cites W2935703330 @default.
- W4306174805 cites W2940438782 @default.
- W4306174805 cites W2949317881 @default.
- W4306174805 cites W2951364430 @default.
- W4306174805 cites W3011632218 @default.
- W4306174805 cites W3047005263 @default.
- W4306174805 cites W3111061871 @default.
- W4306174805 cites W3120457009 @default.
- W4306174805 cites W3163755236 @default.
- W4306174805 cites W4224216279 @default.
- W4306174805 doi "https://doi.org/10.1016/j.isci.2022.105345" @default.
- W4306174805 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36325068" @default.
- W4306174805 hasPublicationYear "2022" @default.
- W4306174805 type Work @default.
- W4306174805 citedByCount "2" @default.
- W4306174805 countsByYear W43061748052023 @default.
- W4306174805 crossrefType "journal-article" @default.
- W4306174805 hasAuthorship W4306174805A5046995251 @default.
- W4306174805 hasAuthorship W4306174805A5050208449 @default.
- W4306174805 hasAuthorship W4306174805A5069756468 @default.
- W4306174805 hasAuthorship W4306174805A5077099452 @default.
- W4306174805 hasAuthorship W4306174805A5083940447 @default.
- W4306174805 hasBestOaLocation W43061748051 @default.
- W4306174805 hasConcept C104317684 @default.
- W4306174805 hasConcept C108583219 @default.
- W4306174805 hasConcept C116834253 @default.
- W4306174805 hasConcept C119857082 @default.
- W4306174805 hasConcept C141231307 @default.
- W4306174805 hasConcept C154945302 @default.
- W4306174805 hasConcept C164614171 @default.
- W4306174805 hasConcept C18903297 @default.
- W4306174805 hasConcept C194583182 @default.
- W4306174805 hasConcept C36823959 @default.
- W4306174805 hasConcept C41008148 @default.
- W4306174805 hasConcept C48044578 @default.
- W4306174805 hasConcept C54355233 @default.
- W4306174805 hasConcept C54458228 @default.
- W4306174805 hasConcept C60644358 @default.
- W4306174805 hasConcept C67705224 @default.
- W4306174805 hasConcept C70721500 @default.
- W4306174805 hasConcept C77088390 @default.
- W4306174805 hasConcept C81363708 @default.
- W4306174805 hasConcept C86803240 @default.
- W4306174805 hasConceptScore W4306174805C104317684 @default.
- W4306174805 hasConceptScore W4306174805C108583219 @default.
- W4306174805 hasConceptScore W4306174805C116834253 @default.
- W4306174805 hasConceptScore W4306174805C119857082 @default.
- W4306174805 hasConceptScore W4306174805C141231307 @default.
- W4306174805 hasConceptScore W4306174805C154945302 @default.
- W4306174805 hasConceptScore W4306174805C164614171 @default.
- W4306174805 hasConceptScore W4306174805C18903297 @default.
- W4306174805 hasConceptScore W4306174805C194583182 @default.
- W4306174805 hasConceptScore W4306174805C36823959 @default.
- W4306174805 hasConceptScore W4306174805C41008148 @default.
- W4306174805 hasConceptScore W4306174805C48044578 @default.
- W4306174805 hasConceptScore W4306174805C54355233 @default.
- W4306174805 hasConceptScore W4306174805C54458228 @default.
- W4306174805 hasConceptScore W4306174805C60644358 @default.
- W4306174805 hasConceptScore W4306174805C67705224 @default.