Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307331199> ?p ?o ?g. }
- W4307331199 endingPage "115138" @default.
- W4307331199 startingPage "115138" @default.
- W4307331199 abstract "We examined the capability of an unsupervised deep learning network to capture the spatial organizations of large-scale structures in a cross-stream plane of a fully developed turbulent channel flow at [Formula: see text]. For this purpose, a generative adversarial network (GAN) is trained using the instantaneous flow fields in the cross-stream plane obtained by a direct numerical simulation (DNS) to generate similar flow fields. Then, these flow fields are examined by focusing on the turbulent statistics and the spatial organizations of coherent structures. We extracted the intense regions of the streamwise velocity fluctuations ( u) and the vortical structures in the cross-stream plane. Comparing the DNS and GAN flow fields, it is revealed that the network not only presents the one-point and two-point statistics quite accurately but also successfully predicts the structural characteristics hidden in the training dataset. We further explored the meandering motions of large-scale u structures by measuring their waviness in the cross-stream plane. It is shown that as the size of the u structures increases, they exhibit more aggressive waviness behavior which in turn increases the average number of vortical structures surrounding the low-momentum structures. The success of GAN in this study suggests its potential to predict similar information at a high Reynolds number and, thus, be utilized as an inflow turbulence generator to provide instantaneous boundary conditions for more complicated problems, such as turbulent boundary layers. This has the potential to greatly reduce the computational costs of DNS related to a required large computational domain at high Reynolds numbers." @default.
- W4307331199 created "2022-10-31" @default.
- W4307331199 creator A5025372873 @default.
- W4307331199 creator A5075135419 @default.
- W4307331199 creator A5091205170 @default.
- W4307331199 date "2022-11-01" @default.
- W4307331199 modified "2023-10-16" @default.
- W4307331199 title "Unsupervised deep learning of spatial organizations of coherent structures in a turbulent channel flow" @default.
- W4307331199 cites W1964321515 @default.
- W4307331199 cites W1981691723 @default.
- W4307331199 cites W1988607050 @default.
- W4307331199 cites W2024116976 @default.
- W4307331199 cites W2049247955 @default.
- W4307331199 cites W2065436455 @default.
- W4307331199 cites W2074152244 @default.
- W4307331199 cites W2087910288 @default.
- W4307331199 cites W2094133789 @default.
- W4307331199 cites W2099087206 @default.
- W4307331199 cites W2100317686 @default.
- W4307331199 cites W2101593751 @default.
- W4307331199 cites W2111389080 @default.
- W4307331199 cites W2114576542 @default.
- W4307331199 cites W2116709943 @default.
- W4307331199 cites W2131537960 @default.
- W4307331199 cites W2135045092 @default.
- W4307331199 cites W2139247058 @default.
- W4307331199 cites W2141208518 @default.
- W4307331199 cites W2152741125 @default.
- W4307331199 cites W2156242059 @default.
- W4307331199 cites W2157318080 @default.
- W4307331199 cites W2157464891 @default.
- W4307331199 cites W2158296088 @default.
- W4307331199 cites W2256150600 @default.
- W4307331199 cites W2336276095 @default.
- W4307331199 cites W2402685789 @default.
- W4307331199 cites W2534240011 @default.
- W4307331199 cites W2580279246 @default.
- W4307331199 cites W2741378658 @default.
- W4307331199 cites W2759678273 @default.
- W4307331199 cites W2802768264 @default.
- W4307331199 cites W2901317823 @default.
- W4307331199 cites W2902480423 @default.
- W4307331199 cites W2918512462 @default.
- W4307331199 cites W2946794331 @default.
- W4307331199 cites W2970612144 @default.
- W4307331199 cites W2981446697 @default.
- W4307331199 cites W3005641041 @default.
- W4307331199 cites W3010937981 @default.
- W4307331199 cites W3017052334 @default.
- W4307331199 cites W3098192066 @default.
- W4307331199 cites W3100989476 @default.
- W4307331199 cites W3104657094 @default.
- W4307331199 cites W3120515765 @default.
- W4307331199 cites W3124389259 @default.
- W4307331199 cites W3206806480 @default.
- W4307331199 cites W4221011222 @default.
- W4307331199 cites W4223507605 @default.
- W4307331199 cites W4255061085 @default.
- W4307331199 doi "https://doi.org/10.1063/5.0123555" @default.
- W4307331199 hasPublicationYear "2022" @default.
- W4307331199 type Work @default.
- W4307331199 citedByCount "1" @default.
- W4307331199 countsByYear W43073311992023 @default.
- W4307331199 crossrefType "journal-article" @default.
- W4307331199 hasAuthorship W4307331199A5025372873 @default.
- W4307331199 hasAuthorship W4307331199A5075135419 @default.
- W4307331199 hasAuthorship W4307331199A5091205170 @default.
- W4307331199 hasConcept C121332964 @default.
- W4307331199 hasConcept C121864883 @default.
- W4307331199 hasConcept C127413603 @default.
- W4307331199 hasConcept C17825722 @default.
- W4307331199 hasConcept C180925781 @default.
- W4307331199 hasConcept C182748727 @default.
- W4307331199 hasConcept C18533594 @default.
- W4307331199 hasConcept C196558001 @default.
- W4307331199 hasConcept C2524010 @default.
- W4307331199 hasConcept C2777701225 @default.
- W4307331199 hasConcept C33923547 @default.
- W4307331199 hasConcept C38349280 @default.
- W4307331199 hasConcept C57879066 @default.
- W4307331199 hasConcept C78519656 @default.
- W4307331199 hasConceptScore W4307331199C121332964 @default.
- W4307331199 hasConceptScore W4307331199C121864883 @default.
- W4307331199 hasConceptScore W4307331199C127413603 @default.
- W4307331199 hasConceptScore W4307331199C17825722 @default.
- W4307331199 hasConceptScore W4307331199C180925781 @default.
- W4307331199 hasConceptScore W4307331199C182748727 @default.
- W4307331199 hasConceptScore W4307331199C18533594 @default.
- W4307331199 hasConceptScore W4307331199C196558001 @default.
- W4307331199 hasConceptScore W4307331199C2524010 @default.
- W4307331199 hasConceptScore W4307331199C2777701225 @default.
- W4307331199 hasConceptScore W4307331199C33923547 @default.
- W4307331199 hasConceptScore W4307331199C38349280 @default.
- W4307331199 hasConceptScore W4307331199C57879066 @default.
- W4307331199 hasConceptScore W4307331199C78519656 @default.
- W4307331199 hasFunder F4320322120 @default.
- W4307331199 hasIssue "11" @default.
- W4307331199 hasLocation W43073311991 @default.