Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307437108> ?p ?o ?g. }
- W4307437108 endingPage "8226" @default.
- W4307437108 startingPage "8226" @default.
- W4307437108 abstract "Elderly gait is a source of rich information about their physical and mental health condition. As an alternative to the multiple sensors on the lower body parts, a single sensor on the pelvis has a positional advantage and an abundance of information acquirable. This study aimed to improve the accuracy of gait event detection in the elderly using a single sensor on the waist and deep learning models. Data were gathered from elderly subjects equipped with three IMU sensors while they walked. The input taken only from the waist sensor was used to train 16 deep-learning models including a CNN, RNN, and CNN-RNN hybrid with or without the Bidirectional and Attention mechanism. The groundtruth was extracted from foot IMU sensors. A fairly high accuracy of 99.73% and 93.89% was achieved by the CNN-BiGRU-Att model at the tolerance window of ±6 TS (±6 ms) and ±1 TS (±1 ms), respectively. Advancing from the previous studies exploring gait event detection, the model demonstrated a great improvement in terms of its prediction error having an MAE of 6.239 ms and 5.24 ms for HS and TO events, respectively, at the tolerance window of ±1 TS. The results demonstrated that the use of CNN-RNN hybrid models with Attention and Bidirectional mechanisms is promising for accurate gait event detection using a single waist sensor. The study can contribute to reducing the burden of gait detection and increase its applicability in future wearable devices that can be used for remote health monitoring (RHM) or diagnosis based thereon." @default.
- W4307437108 created "2022-11-01" @default.
- W4307437108 creator A5047327039 @default.
- W4307437108 creator A5050659837 @default.
- W4307437108 creator A5075713984 @default.
- W4307437108 creator A5090907568 @default.
- W4307437108 date "2022-10-27" @default.
- W4307437108 modified "2023-10-14" @default.
- W4307437108 title "Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor" @default.
- W4307437108 cites W1578781862 @default.
- W4307437108 cites W1847168837 @default.
- W4307437108 cites W1964304792 @default.
- W4307437108 cites W1975099596 @default.
- W4307437108 cites W1981467401 @default.
- W4307437108 cites W2008854521 @default.
- W4307437108 cites W2036970661 @default.
- W4307437108 cites W2056873772 @default.
- W4307437108 cites W2058161128 @default.
- W4307437108 cites W2064675550 @default.
- W4307437108 cites W2066216522 @default.
- W4307437108 cites W2076266873 @default.
- W4307437108 cites W2077411129 @default.
- W4307437108 cites W2079098032 @default.
- W4307437108 cites W2079501369 @default.
- W4307437108 cites W2100616727 @default.
- W4307437108 cites W2115515636 @default.
- W4307437108 cites W2132524523 @default.
- W4307437108 cites W2142102604 @default.
- W4307437108 cites W2148080316 @default.
- W4307437108 cites W2155931565 @default.
- W4307437108 cites W2155952367 @default.
- W4307437108 cites W2159296038 @default.
- W4307437108 cites W2167311298 @default.
- W4307437108 cites W2222399534 @default.
- W4307437108 cites W2258968934 @default.
- W4307437108 cites W2289628494 @default.
- W4307437108 cites W2335882257 @default.
- W4307437108 cites W2338503377 @default.
- W4307437108 cites W2519457600 @default.
- W4307437108 cites W2892161743 @default.
- W4307437108 cites W2901189844 @default.
- W4307437108 cites W2914419435 @default.
- W4307437108 cites W2968271573 @default.
- W4307437108 cites W3036348879 @default.
- W4307437108 cites W3084117216 @default.
- W4307437108 cites W3155372720 @default.
- W4307437108 cites W31641456 @default.
- W4307437108 cites W3193894556 @default.
- W4307437108 cites W3206852795 @default.
- W4307437108 doi "https://doi.org/10.3390/s22218226" @default.
- W4307437108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36365930" @default.
- W4307437108 hasPublicationYear "2022" @default.
- W4307437108 type Work @default.
- W4307437108 citedByCount "4" @default.
- W4307437108 countsByYear W43074371082022 @default.
- W4307437108 countsByYear W43074371082023 @default.
- W4307437108 crossrefType "journal-article" @default.
- W4307437108 hasAuthorship W4307437108A5047327039 @default.
- W4307437108 hasAuthorship W4307437108A5050659837 @default.
- W4307437108 hasAuthorship W4307437108A5075713984 @default.
- W4307437108 hasAuthorship W4307437108A5090907568 @default.
- W4307437108 hasBestOaLocation W43074371081 @default.
- W4307437108 hasConcept C108583219 @default.
- W4307437108 hasConcept C119857082 @default.
- W4307437108 hasConcept C121332964 @default.
- W4307437108 hasConcept C149635348 @default.
- W4307437108 hasConcept C150594956 @default.
- W4307437108 hasConcept C151800584 @default.
- W4307437108 hasConcept C154945302 @default.
- W4307437108 hasConcept C173906292 @default.
- W4307437108 hasConcept C2779662365 @default.
- W4307437108 hasConcept C31972630 @default.
- W4307437108 hasConcept C41008148 @default.
- W4307437108 hasConcept C44154836 @default.
- W4307437108 hasConcept C62520636 @default.
- W4307437108 hasConcept C71924100 @default.
- W4307437108 hasConcept C79061980 @default.
- W4307437108 hasConcept C99508421 @default.
- W4307437108 hasConceptScore W4307437108C108583219 @default.
- W4307437108 hasConceptScore W4307437108C119857082 @default.
- W4307437108 hasConceptScore W4307437108C121332964 @default.
- W4307437108 hasConceptScore W4307437108C149635348 @default.
- W4307437108 hasConceptScore W4307437108C150594956 @default.
- W4307437108 hasConceptScore W4307437108C151800584 @default.
- W4307437108 hasConceptScore W4307437108C154945302 @default.
- W4307437108 hasConceptScore W4307437108C173906292 @default.
- W4307437108 hasConceptScore W4307437108C2779662365 @default.
- W4307437108 hasConceptScore W4307437108C31972630 @default.
- W4307437108 hasConceptScore W4307437108C41008148 @default.
- W4307437108 hasConceptScore W4307437108C44154836 @default.
- W4307437108 hasConceptScore W4307437108C62520636 @default.
- W4307437108 hasConceptScore W4307437108C71924100 @default.
- W4307437108 hasConceptScore W4307437108C79061980 @default.
- W4307437108 hasConceptScore W4307437108C99508421 @default.
- W4307437108 hasFunder F4320318847 @default.
- W4307437108 hasIssue "21" @default.
- W4307437108 hasLocation W43074371081 @default.
- W4307437108 hasLocation W43074371082 @default.