Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307945514> ?p ?o ?g. }
- W4307945514 endingPage "5456" @default.
- W4307945514 startingPage "5456" @default.
- W4307945514 abstract "The aboveground biomass (AGB) of a forest is an important indicator of the forest’s terrestrial carbon storage and its relation to climate change. Due to the advantage of extensive spatial coverage and low cost, coarse-resolution remote sensing data is the main data source for wall-to-wall mapping of forest AGB at the regional scale. Despite this, improving the accuracy and efficiency of forest AGB estimation is a major challenge. In this study, two optical imageries, Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m imagery and Fengyun-3C Visible and Infrared Radiometer (FY-3C VIRR) 1000 m imagery, were used and compared for forest AGB estimation in Yunnan Province, southwest China. One parametric approach, multiple linear regression (MLR), and two nonparametric approaches, k-nearest neighbor (KNN) and random forest (RF), were applied for the two imagery datasets, respectively. We evaluated the performance of the combination of remote sensing data and modeling approaches by comparing the accuracies and also explored the potential of FY-3C imagery data in forest AGB estimation at the regional scale as it was used for this purpose for the first time. We found that the machine learning models KNN and RF provided better results than MLR. From the three approaches for both MODIS and FY-3C imagery, RF performed best with R2 values of 0.84 and 0.81 and RMSE of 23.18 and 23.43, respectively. Estimation of forest AGB based on MODIS was marginally better than the estimation based on FY-3C. FY-3C imagery could therefore be an additional optical remote sensing data source of coarse spatial resolution, comparable to MODIS data which has been widely used for regional forest AGB estimation. Indices related to forest canopy moisture levels from both types of imagery were sensitive to forest AGB. The RF model and MODIS imagery were then applied to map the spatial variation of forest AGB of Yunnan Province. As a result of our study, we determined that Yunnan Province has a total forest AGB of 2123.22 Mt, with a mean value of 58.05 t/ha for forestland in 2016." @default.
- W4307945514 created "2022-11-06" @default.
- W4307945514 creator A5012782128 @default.
- W4307945514 creator A5026683761 @default.
- W4307945514 creator A5029943269 @default.
- W4307945514 creator A5039469209 @default.
- W4307945514 creator A5046810955 @default.
- W4307945514 creator A5056797790 @default.
- W4307945514 creator A5067812910 @default.
- W4307945514 creator A5078435048 @default.
- W4307945514 creator A5078529555 @default.
- W4307945514 date "2022-10-30" @default.
- W4307945514 modified "2023-10-02" @default.
- W4307945514 title "Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR Imageries in Yunnan Province, Southwest China Using Linear Regression, K-Nearest Neighbor and Random Forest" @default.
- W4307945514 cites W1481950944 @default.
- W4307945514 cites W1587618649 @default.
- W4307945514 cites W1964217023 @default.
- W4307945514 cites W1966590025 @default.
- W4307945514 cites W1977761893 @default.
- W4307945514 cites W1978617972 @default.
- W4307945514 cites W1981855554 @default.
- W4307945514 cites W1994508789 @default.
- W4307945514 cites W1998057965 @default.
- W4307945514 cites W2000102737 @default.
- W4307945514 cites W2005040576 @default.
- W4307945514 cites W2012519352 @default.
- W4307945514 cites W2020520344 @default.
- W4307945514 cites W2023705493 @default.
- W4307945514 cites W2035688573 @default.
- W4307945514 cites W2049398443 @default.
- W4307945514 cites W2065966220 @default.
- W4307945514 cites W2077509829 @default.
- W4307945514 cites W2080588314 @default.
- W4307945514 cites W2083805427 @default.
- W4307945514 cites W2087674734 @default.
- W4307945514 cites W2088340693 @default.
- W4307945514 cites W2089441588 @default.
- W4307945514 cites W2091853574 @default.
- W4307945514 cites W2092790758 @default.
- W4307945514 cites W2095530827 @default.
- W4307945514 cites W2109631166 @default.
- W4307945514 cites W2113249705 @default.
- W4307945514 cites W2113410727 @default.
- W4307945514 cites W2129186929 @default.
- W4307945514 cites W2133926586 @default.
- W4307945514 cites W2143010534 @default.
- W4307945514 cites W2155863249 @default.
- W4307945514 cites W2166298943 @default.
- W4307945514 cites W2166516660 @default.
- W4307945514 cites W2169402217 @default.
- W4307945514 cites W2171979590 @default.
- W4307945514 cites W2180289817 @default.
- W4307945514 cites W2508131240 @default.
- W4307945514 cites W2750681831 @default.
- W4307945514 cites W2767528493 @default.
- W4307945514 cites W2793370749 @default.
- W4307945514 cites W2809237570 @default.
- W4307945514 cites W289032787 @default.
- W4307945514 cites W2911964244 @default.
- W4307945514 cites W2922437453 @default.
- W4307945514 cites W2947795653 @default.
- W4307945514 cites W2966570576 @default.
- W4307945514 cites W2969890686 @default.
- W4307945514 cites W2978307183 @default.
- W4307945514 cites W2990006157 @default.
- W4307945514 cites W2990923659 @default.
- W4307945514 cites W3035803741 @default.
- W4307945514 cites W3039045927 @default.
- W4307945514 cites W3127157373 @default.
- W4307945514 cites W3153743275 @default.
- W4307945514 cites W3163712291 @default.
- W4307945514 cites W3184416266 @default.
- W4307945514 cites W3196967960 @default.
- W4307945514 cites W3205462867 @default.
- W4307945514 cites W4289516124 @default.
- W4307945514 doi "https://doi.org/10.3390/rs14215456" @default.
- W4307945514 hasPublicationYear "2022" @default.
- W4307945514 type Work @default.
- W4307945514 citedByCount "4" @default.
- W4307945514 countsByYear W43079455142023 @default.
- W4307945514 crossrefType "journal-article" @default.
- W4307945514 hasAuthorship W4307945514A5012782128 @default.
- W4307945514 hasAuthorship W4307945514A5026683761 @default.
- W4307945514 hasAuthorship W4307945514A5029943269 @default.
- W4307945514 hasAuthorship W4307945514A5039469209 @default.
- W4307945514 hasAuthorship W4307945514A5046810955 @default.
- W4307945514 hasAuthorship W4307945514A5056797790 @default.
- W4307945514 hasAuthorship W4307945514A5067812910 @default.
- W4307945514 hasAuthorship W4307945514A5078435048 @default.
- W4307945514 hasAuthorship W4307945514A5078529555 @default.
- W4307945514 hasBestOaLocation W43079455141 @default.
- W4307945514 hasConcept C105795698 @default.
- W4307945514 hasConcept C127413603 @default.
- W4307945514 hasConcept C146978453 @default.
- W4307945514 hasConcept C154945302 @default.
- W4307945514 hasConcept C169258074 @default.
- W4307945514 hasConcept C19269812 @default.
- W4307945514 hasConcept C205649164 @default.