Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313011698> ?p ?o ?g. }
- W4313011698 endingPage "23" @default.
- W4313011698 startingPage "3" @default.
- W4313011698 abstract "Experimentally [1-38] and computationally [39-50] validated machine learning (ML) articles are sorted based on the size of the training data: 1-100, 101-10000, and 10000+ in a comprehensive set summarizing legacy and recent advances in the field. The review emphasizes the interrelated fields of synthesis, characterization, and prediction. Size range 1-100 consists mostly of Bayesian optimization (BO) articles, whereas 101-10000 consists mostly of support vector machine (SVM) articles. The articles often use combinations of ML, feature selection (FS), adaptive design (AD), high-throughput (HiTp) techniques, and domain knowledge to enhance predictive performance and/or model interpretability. Grouping cross-validation (G-CV) techniques curb overly optimistic extrapolative predictive performance. Smaller datasets relying on AD are typically able to identify new materials with desired properties but do so in a constrained design space. In larger datasets, the low-hanging fruit of materials optimization is typically already discovered, and the models are generally less successful at extrapolating to new materials, especially when the model training data favors a particular type of material. The large increase of ML materials science articles that perform experimental or computational validation on the predicted results demonstrates the interpenetration of materials informatics with the materials science discipline and an accelerating materials discovery for real-world applications." @default.
- W4313011698 created "2023-01-05" @default.
- W4313011698 creator A5003301534 @default.
- W4313011698 creator A5051575915 @default.
- W4313011698 creator A5054163917 @default.
- W4313011698 creator A5066573651 @default.
- W4313011698 date "2023-01-01" @default.
- W4313011698 modified "2023-09-27" @default.
- W4313011698 title "Data-driven materials discovery and synthesis using machine learning methods" @default.
- W4313011698 cites W1563453094 @default.
- W4313011698 cites W1915358031 @default.
- W4313011698 cites W1992985800 @default.
- W4313011698 cites W2015197254 @default.
- W4313011698 cites W2021254279 @default.
- W4313011698 cites W2065832194 @default.
- W4313011698 cites W2278970271 @default.
- W4313011698 cites W2313966941 @default.
- W4313011698 cites W2347129741 @default.
- W4313011698 cites W2415372084 @default.
- W4313011698 cites W2426109273 @default.
- W4313011698 cites W2437591545 @default.
- W4313011698 cites W2461312660 @default.
- W4313011698 cites W2464725281 @default.
- W4313011698 cites W2478294658 @default.
- W4313011698 cites W2510169513 @default.
- W4313011698 cites W2520500207 @default.
- W4313011698 cites W2555683692 @default.
- W4313011698 cites W2558921396 @default.
- W4313011698 cites W2559612475 @default.
- W4313011698 cites W2568014457 @default.
- W4313011698 cites W2588572017 @default.
- W4313011698 cites W2758012776 @default.
- W4313011698 cites W2768828389 @default.
- W4313011698 cites W2782634521 @default.
- W4313011698 cites W2788500979 @default.
- W4313011698 cites W2804431384 @default.
- W4313011698 cites W2806681928 @default.
- W4313011698 cites W2807471255 @default.
- W4313011698 cites W2883578585 @default.
- W4313011698 cites W2884258597 @default.
- W4313011698 cites W2884430236 @default.
- W4313011698 cites W2885048850 @default.
- W4313011698 cites W2888395196 @default.
- W4313011698 cites W2890744451 @default.
- W4313011698 cites W2897119344 @default.
- W4313011698 cites W2897562460 @default.
- W4313011698 cites W2898227608 @default.
- W4313011698 cites W2899354085 @default.
- W4313011698 cites W2903564615 @default.
- W4313011698 cites W2907430799 @default.
- W4313011698 cites W2914754295 @default.
- W4313011698 cites W2921269309 @default.
- W4313011698 cites W2921873493 @default.
- W4313011698 cites W2950904464 @default.
- W4313011698 cites W2952832141 @default.
- W4313011698 cites W2954110457 @default.
- W4313011698 cites W2981313909 @default.
- W4313011698 cites W2981458968 @default.
- W4313011698 cites W2982403422 @default.
- W4313011698 cites W2995399166 @default.
- W4313011698 cites W2995854597 @default.
- W4313011698 cites W2998428519 @default.
- W4313011698 cites W3010077951 @default.
- W4313011698 cites W3022561955 @default.
- W4313011698 cites W3026048580 @default.
- W4313011698 cites W3026094172 @default.
- W4313011698 cites W3026827800 @default.
- W4313011698 cites W3030026910 @default.
- W4313011698 cites W3034186509 @default.
- W4313011698 cites W3036449204 @default.
- W4313011698 cites W3036553094 @default.
- W4313011698 cites W3042344738 @default.
- W4313011698 cites W3082647646 @default.
- W4313011698 cites W3103128256 @default.
- W4313011698 cites W3107295539 @default.
- W4313011698 cites W3178883367 @default.
- W4313011698 doi "https://doi.org/10.1016/b978-0-12-823144-9.00079-0" @default.
- W4313011698 hasPublicationYear "2023" @default.
- W4313011698 type Work @default.
- W4313011698 citedByCount "0" @default.
- W4313011698 crossrefType "book-chapter" @default.
- W4313011698 hasAuthorship W4313011698A5003301534 @default.
- W4313011698 hasAuthorship W4313011698A5051575915 @default.
- W4313011698 hasAuthorship W4313011698A5054163917 @default.
- W4313011698 hasAuthorship W4313011698A5066573651 @default.
- W4313011698 hasBestOaLocation W43130116982 @default.
- W4313011698 hasConcept C108583219 @default.
- W4313011698 hasConcept C119857082 @default.
- W4313011698 hasConcept C12267149 @default.
- W4313011698 hasConcept C134306372 @default.
- W4313011698 hasConcept C138816342 @default.
- W4313011698 hasConcept C145642194 @default.
- W4313011698 hasConcept C148483581 @default.
- W4313011698 hasConcept C154945302 @default.
- W4313011698 hasConcept C158518442 @default.
- W4313011698 hasConcept C159110408 @default.
- W4313011698 hasConcept C177264268 @default.
- W4313011698 hasConcept C199360897 @default.