Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313018445> ?p ?o ?g. }
- W4313018445 endingPage "9508" @default.
- W4313018445 startingPage "9497" @default.
- W4313018445 abstract "Spectral reconstruction from RGB images has made significant progress. Previous works usually utilized the noise-free RGB images as input to reconstruct the corresponding hyperspectral images (HSIs). However, due to instrumental limitation or atmospheric interference, it is inevitable to suffer from noise (e.g., Gaussian noise) in the actual image acquisition process, which further increases the difficulty of spectral reconstruction. In this paper, we propose an enhanced channel attention network (ECANet) to learn a nonlinear mapping from noisy RGB images to clean HSIs. The backbone of our proposed ECANet is stacked with multiple enhanced channel attention (ECA) blocks. The ECA block is the dual residual version of channel attention block, which makes the network focus on key auxiliary information and features that are more conducive to spectral reconstruction. For the case that the input RGB images are disturbed by Gaussian noise, cross-layer feature fusion (CLFF) unit is used to concatenate the multiple feature maps at different depths for more powerful feature representations. In addition, we design a novel combined loss function as the constraint of the ECANet to achieve more accurate reconstruction result. Experimental results on two HSI benchmarks, CAVE and NTIRE 2020, demonstrate that the effectiveness of our method in terms of both visual and quantitative over other state-of-the-art methods." @default.
- W4313018445 created "2023-01-05" @default.
- W4313018445 creator A5008534620 @default.
- W4313018445 creator A5013248130 @default.
- W4313018445 creator A5022773272 @default.
- W4313018445 creator A5041831165 @default.
- W4313018445 date "2022-01-01" @default.
- W4313018445 modified "2023-09-30" @default.
- W4313018445 title "Enhanced Channel Attention Network With Cross-Layer Feature Fusion for Spectral Reconstruction in the Presence of Gaussian Noise" @default.
- W4313018445 cites W1992653101 @default.
- W4313018445 cites W2065579444 @default.
- W4313018445 cites W2097259623 @default.
- W4313018445 cites W2100109944 @default.
- W4313018445 cites W2149471024 @default.
- W4313018445 cites W2170608472 @default.
- W4313018445 cites W2242218935 @default.
- W4313018445 cites W2429520799 @default.
- W4313018445 cites W2520430674 @default.
- W4313018445 cites W2547018407 @default.
- W4313018445 cites W2577537809 @default.
- W4313018445 cites W2592312604 @default.
- W4313018445 cites W2611008809 @default.
- W4313018445 cites W2742721847 @default.
- W4313018445 cites W2752782242 @default.
- W4313018445 cites W2764276316 @default.
- W4313018445 cites W2765154721 @default.
- W4313018445 cites W2766101120 @default.
- W4313018445 cites W2806155925 @default.
- W4313018445 cites W2890306271 @default.
- W4313018445 cites W2892288283 @default.
- W4313018445 cites W2893739000 @default.
- W4313018445 cites W2914331134 @default.
- W4313018445 cites W2948107928 @default.
- W4313018445 cites W3034247386 @default.
- W4313018445 cites W3035068513 @default.
- W4313018445 cites W3035556176 @default.
- W4313018445 cites W3035598238 @default.
- W4313018445 cites W3039213332 @default.
- W4313018445 cites W3085051361 @default.
- W4313018445 cites W3089799197 @default.
- W4313018445 cites W3128776197 @default.
- W4313018445 cites W3133055443 @default.
- W4313018445 cites W4214666412 @default.
- W4313018445 cites W4225685398 @default.
- W4313018445 cites W4226291728 @default.
- W4313018445 cites W935139217 @default.
- W4313018445 doi "https://doi.org/10.1109/jstars.2022.3218820" @default.
- W4313018445 hasPublicationYear "2022" @default.
- W4313018445 type Work @default.
- W4313018445 citedByCount "0" @default.
- W4313018445 crossrefType "journal-article" @default.
- W4313018445 hasAuthorship W4313018445A5008534620 @default.
- W4313018445 hasAuthorship W4313018445A5013248130 @default.
- W4313018445 hasAuthorship W4313018445A5022773272 @default.
- W4313018445 hasAuthorship W4313018445A5041831165 @default.
- W4313018445 hasBestOaLocation W43130184451 @default.
- W4313018445 hasConcept C115961682 @default.
- W4313018445 hasConcept C120665830 @default.
- W4313018445 hasConcept C121332964 @default.
- W4313018445 hasConcept C127162648 @default.
- W4313018445 hasConcept C138885662 @default.
- W4313018445 hasConcept C141379421 @default.
- W4313018445 hasConcept C153180895 @default.
- W4313018445 hasConcept C154945302 @default.
- W4313018445 hasConcept C159078339 @default.
- W4313018445 hasConcept C192209626 @default.
- W4313018445 hasConcept C2524010 @default.
- W4313018445 hasConcept C2776401178 @default.
- W4313018445 hasConcept C2777210771 @default.
- W4313018445 hasConcept C31972630 @default.
- W4313018445 hasConcept C33923547 @default.
- W4313018445 hasConcept C41008148 @default.
- W4313018445 hasConcept C41895202 @default.
- W4313018445 hasConcept C4199805 @default.
- W4313018445 hasConcept C76155785 @default.
- W4313018445 hasConcept C82990744 @default.
- W4313018445 hasConcept C99498987 @default.
- W4313018445 hasConceptScore W4313018445C115961682 @default.
- W4313018445 hasConceptScore W4313018445C120665830 @default.
- W4313018445 hasConceptScore W4313018445C121332964 @default.
- W4313018445 hasConceptScore W4313018445C127162648 @default.
- W4313018445 hasConceptScore W4313018445C138885662 @default.
- W4313018445 hasConceptScore W4313018445C141379421 @default.
- W4313018445 hasConceptScore W4313018445C153180895 @default.
- W4313018445 hasConceptScore W4313018445C154945302 @default.
- W4313018445 hasConceptScore W4313018445C159078339 @default.
- W4313018445 hasConceptScore W4313018445C192209626 @default.
- W4313018445 hasConceptScore W4313018445C2524010 @default.
- W4313018445 hasConceptScore W4313018445C2776401178 @default.
- W4313018445 hasConceptScore W4313018445C2777210771 @default.
- W4313018445 hasConceptScore W4313018445C31972630 @default.
- W4313018445 hasConceptScore W4313018445C33923547 @default.
- W4313018445 hasConceptScore W4313018445C41008148 @default.
- W4313018445 hasConceptScore W4313018445C41895202 @default.
- W4313018445 hasConceptScore W4313018445C4199805 @default.
- W4313018445 hasConceptScore W4313018445C76155785 @default.
- W4313018445 hasConceptScore W4313018445C82990744 @default.
- W4313018445 hasConceptScore W4313018445C99498987 @default.