Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313360920> ?p ?o ?g. }
- W4313360920 endingPage "107" @default.
- W4313360920 startingPage "107" @default.
- W4313360920 abstract "In recent times, many studies concerning surgical video analysis are being conducted due to its growing importance in many medical applications. In particular, it is very important to be able to recognize the current surgical phase because the phase information can be utilized in various ways both during and after surgery. This paper proposes an efficient phase recognition network, called MomentNet, for cholecystectomy endoscopic videos. Unlike LSTM-based network, MomentNet is based on a multi-stage temporal convolutional network. Besides, to improve the phase prediction accuracy, the proposed method adopts a new loss function to supplement the general cross entropy loss function. The new loss function significantly improves the performance of the phase recognition network by constraining un-desirable phase transition and preventing over-segmentation. In addition, MomnetNet effectively applies positional encoding techniques, which are commonly applied in transformer architectures, to the multi-stage temporal convolution network. By using the positional encoding techniques, MomentNet can provide important temporal context, resulting in higher phase prediction accuracy. Furthermore, the MomentNet applies label smoothing technique to suppress overfitting and replaces the backbone network for feature extraction to further improve the network performance. As a result, the MomentNet achieves 92.31% accuracy in the phase recognition task with the Cholec80 dataset, which is 4.55% higher than that of the baseline architecture." @default.
- W4313360920 created "2023-01-06" @default.
- W4313360920 creator A5016364680 @default.
- W4313360920 creator A5036969936 @default.
- W4313360920 creator A5046293721 @default.
- W4313360920 creator A5091798738 @default.
- W4313360920 date "2022-12-29" @default.
- W4313360920 modified "2023-09-26" @default.
- W4313360920 title "Multi-Stage Temporal Convolutional Network with Moment Loss and Positional Encoding for Surgical Phase Recognition" @default.
- W4313360920 cites W1989912492 @default.
- W4313360920 cites W1998162403 @default.
- W4313360920 cites W2018421200 @default.
- W4313360920 cites W2041742273 @default.
- W4313360920 cites W2179331991 @default.
- W4313360920 cites W2183341477 @default.
- W4313360920 cites W2194775991 @default.
- W4313360920 cites W2266464013 @default.
- W4313360920 cites W2519007024 @default.
- W4313360920 cites W2568518337 @default.
- W4313360920 cites W2580456502 @default.
- W4313360920 cites W2777273430 @default.
- W4313360920 cites W2795040403 @default.
- W4313360920 cites W2941599692 @default.
- W4313360920 cites W2963853051 @default.
- W4313360920 cites W2979797179 @default.
- W4313360920 cites W3037101939 @default.
- W4313360920 cites W3072781859 @default.
- W4313360920 cites W3092562667 @default.
- W4313360920 cites W3098609708 @default.
- W4313360920 cites W3110529192 @default.
- W4313360920 cites W3128511643 @default.
- W4313360920 cites W3131326546 @default.
- W4313360920 cites W3136625518 @default.
- W4313360920 cites W3177361240 @default.
- W4313360920 cites W3188404242 @default.
- W4313360920 cites W3190265638 @default.
- W4313360920 cites W3190855684 @default.
- W4313360920 cites W3209632425 @default.
- W4313360920 cites W4283316516 @default.
- W4313360920 cites W4286437542 @default.
- W4313360920 cites W4287009405 @default.
- W4313360920 cites W4288039524 @default.
- W4313360920 cites W4288432579 @default.
- W4313360920 cites W4297504241 @default.
- W4313360920 cites W4308119975 @default.
- W4313360920 cites W4312126584 @default.
- W4313360920 cites W4312238440 @default.
- W4313360920 doi "https://doi.org/10.3390/diagnostics13010107" @default.
- W4313360920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36611399" @default.
- W4313360920 hasPublicationYear "2022" @default.
- W4313360920 type Work @default.
- W4313360920 citedByCount "1" @default.
- W4313360920 countsByYear W43133609202023 @default.
- W4313360920 crossrefType "journal-article" @default.
- W4313360920 hasAuthorship W4313360920A5016364680 @default.
- W4313360920 hasAuthorship W4313360920A5036969936 @default.
- W4313360920 hasAuthorship W4313360920A5046293721 @default.
- W4313360920 hasAuthorship W4313360920A5091798738 @default.
- W4313360920 hasBestOaLocation W43133609201 @default.
- W4313360920 hasConcept C125411270 @default.
- W4313360920 hasConcept C153180895 @default.
- W4313360920 hasConcept C154945302 @default.
- W4313360920 hasConcept C22019652 @default.
- W4313360920 hasConcept C31972630 @default.
- W4313360920 hasConcept C3770464 @default.
- W4313360920 hasConcept C41008148 @default.
- W4313360920 hasConcept C50644808 @default.
- W4313360920 hasConcept C52622490 @default.
- W4313360920 hasConcept C81363708 @default.
- W4313360920 hasConcept C89600930 @default.
- W4313360920 hasConceptScore W4313360920C125411270 @default.
- W4313360920 hasConceptScore W4313360920C153180895 @default.
- W4313360920 hasConceptScore W4313360920C154945302 @default.
- W4313360920 hasConceptScore W4313360920C22019652 @default.
- W4313360920 hasConceptScore W4313360920C31972630 @default.
- W4313360920 hasConceptScore W4313360920C3770464 @default.
- W4313360920 hasConceptScore W4313360920C41008148 @default.
- W4313360920 hasConceptScore W4313360920C50644808 @default.
- W4313360920 hasConceptScore W4313360920C52622490 @default.
- W4313360920 hasConceptScore W4313360920C81363708 @default.
- W4313360920 hasConceptScore W4313360920C89600930 @default.
- W4313360920 hasFunder F4320321202 @default.
- W4313360920 hasFunder F4320322120 @default.
- W4313360920 hasIssue "1" @default.
- W4313360920 hasLocation W43133609201 @default.
- W4313360920 hasLocation W43133609202 @default.
- W4313360920 hasLocation W43133609203 @default.
- W4313360920 hasOpenAccess W4313360920 @default.
- W4313360920 hasPrimaryLocation W43133609201 @default.
- W4313360920 hasRelatedWork W2146076056 @default.
- W4313360920 hasRelatedWork W2767651786 @default.
- W4313360920 hasRelatedWork W2811390910 @default.
- W4313360920 hasRelatedWork W3012393889 @default.
- W4313360920 hasRelatedWork W3081496756 @default.
- W4313360920 hasRelatedWork W3127819136 @default.
- W4313360920 hasRelatedWork W4200528772 @default.
- W4313360920 hasRelatedWork W4220996320 @default.
- W4313360920 hasRelatedWork W4312376745 @default.