Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313432437> ?p ?o ?g. }
- W4313432437 abstract "Purpose The purpose of this study was to investigate the clinical and non-clinical characteristics that may affect the early death rate of patients with metastatic colorectal carcinoma (mCRC) and develop accurate prognostic predictive models for mCRC. Method Medical records of 35,639 patients with mCRC diagnosed from 2010 to 2019 were obtained from the SEER database. All the patients were randomly divided into a training cohort and a validation cohort in a ratio of 7:3. X-tile software was utilized to identify the optimal cutoff point for age and tumor size. Univariate and multivariate logistic regression models were used to determine the independent predictors associated with overall early death and cancer-specific early death caused by mCRC. Simultaneously, predictive and dynamic nomograms were constructed. Moreover, logistic regression, random forest, CatBoost, LightGBM, and XGBoost were used to establish machine learning (ML) models. In addition, receiver operating characteristic curves (ROCs) and calibration plots were obtained to estimate the accuracy of the models. Decision curve analysis (DCA) was employed to determine the clinical benefits of ML models. Results The optimal cutoff points for age were 58 and 77 years and those for tumor size of 45 and 76. A total of 15 independent risk factors, namely, age, marital status, race, tumor localization, histologic type, grade, N-stage, tumor size, surgery, radiation, chemotherapy, bone metastasis, brain metastasis, liver metastasis, and lung metastasis, were significantly associated with the overall early death rate of patients with mCRC and the cancer-specific early death rate of patients with mCRC, following which nomograms were constructed. The ML models revealed that the random forest model accurately predicted outcomes, followed by logistic regression, CatBoost, XGBoost, and LightGBM models. Compared with other algorithms, the random forest model provided more clinical benefits than other models and can be used to make clinical decisions in overall early death and specific early death caused by mCRC. Conclusion ML algorithms combined with nomograms may play an important role in distinguishing early deaths owing to mCRC and potentially help clinicians make clinical decisions and follow-up strategies." @default.
- W4313432437 created "2023-01-06" @default.
- W4313432437 creator A5020232716 @default.
- W4313432437 creator A5050850936 @default.
- W4313432437 creator A5052290693 @default.
- W4313432437 creator A5067413405 @default.
- W4313432437 date "2022-12-20" @default.
- W4313432437 modified "2023-10-14" @default.
- W4313432437 title "Construction and validation of nomograms combined with novel machine learning algorithms to predict early death of patients with metastatic colorectal cancer" @default.
- W4313432437 cites W1968370746 @default.
- W4313432437 cites W2005839559 @default.
- W4313432437 cites W2005903558 @default.
- W4313432437 cites W2014516834 @default.
- W4313432437 cites W2023260179 @default.
- W4313432437 cites W2072806867 @default.
- W4313432437 cites W2087240354 @default.
- W4313432437 cites W2133650808 @default.
- W4313432437 cites W2140614736 @default.
- W4313432437 cites W2153505392 @default.
- W4313432437 cites W2185757459 @default.
- W4313432437 cites W2397085131 @default.
- W4313432437 cites W2567103208 @default.
- W4313432437 cites W2787981425 @default.
- W4313432437 cites W2799387125 @default.
- W4313432437 cites W2912596624 @default.
- W4313432437 cites W2943491685 @default.
- W4313432437 cites W2945344996 @default.
- W4313432437 cites W2949547277 @default.
- W4313432437 cites W2984360057 @default.
- W4313432437 cites W2988974117 @default.
- W4313432437 cites W2998322952 @default.
- W4313432437 cites W3014413945 @default.
- W4313432437 cites W3046654067 @default.
- W4313432437 cites W3112810440 @default.
- W4313432437 cites W3113744708 @default.
- W4313432437 cites W3119367752 @default.
- W4313432437 cites W3128646645 @default.
- W4313432437 cites W3146804918 @default.
- W4313432437 cites W3173824218 @default.
- W4313432437 cites W3196885036 @default.
- W4313432437 cites W3201505736 @default.
- W4313432437 cites W3201576472 @default.
- W4313432437 cites W4206491296 @default.
- W4313432437 cites W4211063456 @default.
- W4313432437 cites W4221076685 @default.
- W4313432437 cites W4250849363 @default.
- W4313432437 doi "https://doi.org/10.3389/fpubh.2022.1008137" @default.
- W4313432437 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36605237" @default.
- W4313432437 hasPublicationYear "2022" @default.
- W4313432437 type Work @default.
- W4313432437 citedByCount "0" @default.
- W4313432437 crossrefType "journal-article" @default.
- W4313432437 hasAuthorship W4313432437A5020232716 @default.
- W4313432437 hasAuthorship W4313432437A5050850936 @default.
- W4313432437 hasAuthorship W4313432437A5052290693 @default.
- W4313432437 hasAuthorship W4313432437A5067413405 @default.
- W4313432437 hasBestOaLocation W43134324371 @default.
- W4313432437 hasConcept C11413529 @default.
- W4313432437 hasConcept C119857082 @default.
- W4313432437 hasConcept C121608353 @default.
- W4313432437 hasConcept C126322002 @default.
- W4313432437 hasConcept C137345334 @default.
- W4313432437 hasConcept C143998085 @default.
- W4313432437 hasConcept C146357865 @default.
- W4313432437 hasConcept C151730666 @default.
- W4313432437 hasConcept C151956035 @default.
- W4313432437 hasConcept C2779013556 @default.
- W4313432437 hasConcept C34626388 @default.
- W4313432437 hasConcept C41008148 @default.
- W4313432437 hasConcept C526805850 @default.
- W4313432437 hasConcept C58471807 @default.
- W4313432437 hasConcept C71924100 @default.
- W4313432437 hasConcept C72563966 @default.
- W4313432437 hasConcept C86803240 @default.
- W4313432437 hasConceptScore W4313432437C11413529 @default.
- W4313432437 hasConceptScore W4313432437C119857082 @default.
- W4313432437 hasConceptScore W4313432437C121608353 @default.
- W4313432437 hasConceptScore W4313432437C126322002 @default.
- W4313432437 hasConceptScore W4313432437C137345334 @default.
- W4313432437 hasConceptScore W4313432437C143998085 @default.
- W4313432437 hasConceptScore W4313432437C146357865 @default.
- W4313432437 hasConceptScore W4313432437C151730666 @default.
- W4313432437 hasConceptScore W4313432437C151956035 @default.
- W4313432437 hasConceptScore W4313432437C2779013556 @default.
- W4313432437 hasConceptScore W4313432437C34626388 @default.
- W4313432437 hasConceptScore W4313432437C41008148 @default.
- W4313432437 hasConceptScore W4313432437C526805850 @default.
- W4313432437 hasConceptScore W4313432437C58471807 @default.
- W4313432437 hasConceptScore W4313432437C71924100 @default.
- W4313432437 hasConceptScore W4313432437C72563966 @default.
- W4313432437 hasConceptScore W4313432437C86803240 @default.
- W4313432437 hasLocation W43134324371 @default.
- W4313432437 hasLocation W43134324372 @default.
- W4313432437 hasLocation W43134324373 @default.
- W4313432437 hasOpenAccess W4313432437 @default.
- W4313432437 hasPrimaryLocation W43134324371 @default.
- W4313432437 hasRelatedWork W2804164596 @default.
- W4313432437 hasRelatedWork W3190029335 @default.
- W4313432437 hasRelatedWork W4210256371 @default.
- W4313432437 hasRelatedWork W4239980826 @default.