Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313432512> ?p ?o ?g. }
- W4313432512 abstract "Drug repurposing is an approach to identify new therapeutic applications for existing drugs and small molecules. It is a field of growing research interest due to its time and cost effectiveness as compared with de novo drug discovery. One method for drug repurposing is to adopt a systems biology approach to associate molecular ‘signatures’ of drug and disease. Drugs which have an inverse relationship with the disease signature may be able to reverse the molecular effects of the disease and thus be candidates for repurposing. Conversely, drugs which mimic the disease signatures can inform on potential molecular mechanisms of disease. The relationship between these disease and drug signatures are quantified through connectivity scores. Identifying a suitable drug-disease scoring method is key for in silico drug repurposing, so as to obtain an accurate representation of the true drug-disease relationship. There are several methods to calculate these connectivity scores, notably the Kolmogorov-Smirnov (KS), Zhang and eXtreme Sum (XSum). However, these methods can provide discordant estimations of the drug-disease relationship, and this discordance can affect the drug-disease indication. Using the gene expression profiles from the Library of Integrated Network-Based Cellular Signatures (LINCS) database, we evaluated the methods based on their drug-disease connectivity scoring performance. In this first-of-its-kind analysis, we varied the quality of disease signatures by using only highly differential genes or by the inclusion of non-differential genes. Further, we simulated noisy disease signatures by introducing varying levels of noise into the gene expression signatures. Overall, we found that there was not one method that outperformed the others in all instances, but the Zhang method performs well in a majority of our analyses. Our results provide a framework to evaluate connectivity scoring methods, and considerations for deciding which scoring method to apply in future systems biology studies for drug repurposing." @default.
- W4313432512 created "2023-01-06" @default.
- W4313432512 creator A5017839011 @default.
- W4313432512 creator A5062596666 @default.
- W4313432512 date "2022-12-20" @default.
- W4313432512 modified "2023-09-27" @default.
- W4313432512 title "Evaluating the robustness of connectivity methods to noise for in silico drug repurposing studies" @default.
- W4313432512 cites W1971634866 @default.
- W4313432512 cites W1975704872 @default.
- W4313432512 cites W1979850506 @default.
- W4313432512 cites W1980222592 @default.
- W4313432512 cites W1985481481 @default.
- W4313432512 cites W1986844200 @default.
- W4313432512 cites W2026673536 @default.
- W4313432512 cites W2045949302 @default.
- W4313432512 cites W2055695109 @default.
- W4313432512 cites W2081098333 @default.
- W4313432512 cites W2085228451 @default.
- W4313432512 cites W2089791879 @default.
- W4313432512 cites W2091814024 @default.
- W4313432512 cites W2099582158 @default.
- W4313432512 cites W2101802836 @default.
- W4313432512 cites W2105829583 @default.
- W4313432512 cites W2107118079 @default.
- W4313432512 cites W2121604817 @default.
- W4313432512 cites W2128054164 @default.
- W4313432512 cites W2142339805 @default.
- W4313432512 cites W2146161922 @default.
- W4313432512 cites W2150588304 @default.
- W4313432512 cites W2162799304 @default.
- W4313432512 cites W2307799019 @default.
- W4313432512 cites W2552588465 @default.
- W4313432512 cites W2558040375 @default.
- W4313432512 cites W2568779902 @default.
- W4313432512 cites W2571288670 @default.
- W4313432512 cites W2612467560 @default.
- W4313432512 cites W2806662900 @default.
- W4313432512 cites W2896002881 @default.
- W4313432512 cites W2902774017 @default.
- W4313432512 cites W2950659012 @default.
- W4313432512 cites W2982376008 @default.
- W4313432512 cites W2990827591 @default.
- W4313432512 cites W3090488484 @default.
- W4313432512 cites W3102695902 @default.
- W4313432512 cites W3115919135 @default.
- W4313432512 cites W3161748363 @default.
- W4313432512 cites W3201002915 @default.
- W4313432512 cites W3205064505 @default.
- W4313432512 cites W4226172846 @default.
- W4313432512 cites W594682156 @default.
- W4313432512 doi "https://doi.org/10.3389/fsysb.2022.1050730" @default.
- W4313432512 hasPublicationYear "2022" @default.
- W4313432512 type Work @default.
- W4313432512 citedByCount "0" @default.
- W4313432512 crossrefType "journal-article" @default.
- W4313432512 hasAuthorship W4313432512A5017839011 @default.
- W4313432512 hasAuthorship W4313432512A5062596666 @default.
- W4313432512 hasBestOaLocation W43134325121 @default.
- W4313432512 hasConcept C103637391 @default.
- W4313432512 hasConcept C104317684 @default.
- W4313432512 hasConcept C119857082 @default.
- W4313432512 hasConcept C142724271 @default.
- W4313432512 hasConcept C18903297 @default.
- W4313432512 hasConcept C2775905019 @default.
- W4313432512 hasConcept C2779134260 @default.
- W4313432512 hasConcept C2780035454 @default.
- W4313432512 hasConcept C41008148 @default.
- W4313432512 hasConcept C519536355 @default.
- W4313432512 hasConcept C54355233 @default.
- W4313432512 hasConcept C60644358 @default.
- W4313432512 hasConcept C63479239 @default.
- W4313432512 hasConcept C64903051 @default.
- W4313432512 hasConcept C70721500 @default.
- W4313432512 hasConcept C71924100 @default.
- W4313432512 hasConcept C74187038 @default.
- W4313432512 hasConcept C86803240 @default.
- W4313432512 hasConcept C98274493 @default.
- W4313432512 hasConceptScore W4313432512C103637391 @default.
- W4313432512 hasConceptScore W4313432512C104317684 @default.
- W4313432512 hasConceptScore W4313432512C119857082 @default.
- W4313432512 hasConceptScore W4313432512C142724271 @default.
- W4313432512 hasConceptScore W4313432512C18903297 @default.
- W4313432512 hasConceptScore W4313432512C2775905019 @default.
- W4313432512 hasConceptScore W4313432512C2779134260 @default.
- W4313432512 hasConceptScore W4313432512C2780035454 @default.
- W4313432512 hasConceptScore W4313432512C41008148 @default.
- W4313432512 hasConceptScore W4313432512C519536355 @default.
- W4313432512 hasConceptScore W4313432512C54355233 @default.
- W4313432512 hasConceptScore W4313432512C60644358 @default.
- W4313432512 hasConceptScore W4313432512C63479239 @default.
- W4313432512 hasConceptScore W4313432512C64903051 @default.
- W4313432512 hasConceptScore W4313432512C70721500 @default.
- W4313432512 hasConceptScore W4313432512C71924100 @default.
- W4313432512 hasConceptScore W4313432512C74187038 @default.
- W4313432512 hasConceptScore W4313432512C86803240 @default.
- W4313432512 hasConceptScore W4313432512C98274493 @default.
- W4313432512 hasFunder F4320335736 @default.
- W4313432512 hasLocation W43134325121 @default.
- W4313432512 hasLocation W43134325122 @default.
- W4313432512 hasOpenAccess W4313432512 @default.