Matches in SemOpenAlex for { <https://semopenalex.org/work/W4315749947> ?p ?o ?g. }
- W4315749947 endingPage "2200" @default.
- W4315749947 startingPage "2191" @default.
- W4315749947 abstract "Low-dose computed tomography (LDCT) for lung cancer screening is effective, although most eligible people are not being screened. Tools that provide personalized future cancer risk assessment could focus approaches toward those most likely to benefit. We hypothesized that a deep learning model assessing the entire volumetric LDCT data could be built to predict individual risk without requiring additional demographic or clinical data.We developed a model called Sybil using LDCTs from the National Lung Screening Trial (NLST). Sybil requires only one LDCT and does not require clinical data or radiologist annotations; it can run in real time in the background on a radiology reading station. Sybil was validated on three independent data sets: a heldout set of 6,282 LDCTs from NLST participants, 8,821 LDCTs from Massachusetts General Hospital (MGH), and 12,280 LDCTs from Chang Gung Memorial Hospital (CGMH, which included people with a range of smoking history including nonsmokers).Sybil achieved area under the receiver-operator curves for lung cancer prediction at 1 year of 0.92 (95% CI, 0.88 to 0.95) on NLST, 0.86 (95% CI, 0.82 to 0.90) on MGH, and 0.94 (95% CI, 0.91 to 1.00) on CGMH external validation sets. Concordance indices over 6 years were 0.75 (95% CI, 0.72 to 0.78), 0.81 (95% CI, 0.77 to 0.85), and 0.80 (95% CI, 0.75 to 0.86) for NLST, MGH, and CGMH, respectively.Sybil can accurately predict an individual's future lung cancer risk from a single LDCT scan to further enable personalized screening. Future study is required to understand Sybil's clinical applications. Our model and annotations are publicly available.[Media: see text]." @default.
- W4315749947 created "2023-01-13" @default.
- W4315749947 creator A5002567647 @default.
- W4315749947 creator A5004483346 @default.
- W4315749947 creator A5010124873 @default.
- W4315749947 creator A5015435936 @default.
- W4315749947 creator A5022345552 @default.
- W4315749947 creator A5036335426 @default.
- W4315749947 creator A5039126391 @default.
- W4315749947 creator A5042568601 @default.
- W4315749947 creator A5051331130 @default.
- W4315749947 creator A5054130600 @default.
- W4315749947 creator A5055422399 @default.
- W4315749947 creator A5075333926 @default.
- W4315749947 creator A5080708621 @default.
- W4315749947 creator A5081973457 @default.
- W4315749947 creator A5082461467 @default.
- W4315749947 creator A5084801169 @default.
- W4315749947 creator A5085519261 @default.
- W4315749947 date "2023-04-20" @default.
- W4315749947 modified "2023-10-06" @default.
- W4315749947 title "Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography" @default.
- W4315749947 cites W1213336605 @default.
- W4315749947 cites W130099911 @default.
- W4315749947 cites W2012944782 @default.
- W4315749947 cites W2033649338 @default.
- W4315749947 cites W2046189285 @default.
- W4315749947 cites W2053181555 @default.
- W4315749947 cites W2084413241 @default.
- W4315749947 cites W2109896839 @default.
- W4315749947 cites W2120579447 @default.
- W4315749947 cites W2288157239 @default.
- W4315749947 cites W2305841374 @default.
- W4315749947 cites W2367428707 @default.
- W4315749947 cites W2535300095 @default.
- W4315749947 cites W2560856906 @default.
- W4315749947 cites W2604950454 @default.
- W4315749947 cites W2605296973 @default.
- W4315749947 cites W2908841134 @default.
- W4315749947 cites W2910178013 @default.
- W4315749947 cites W2918647694 @default.
- W4315749947 cites W2946185430 @default.
- W4315749947 cites W2980626014 @default.
- W4315749947 cites W3005158781 @default.
- W4315749947 cites W3005291396 @default.
- W4315749947 cites W3082622980 @default.
- W4315749947 cites W3100140293 @default.
- W4315749947 cites W3125542419 @default.
- W4315749947 cites W3134934271 @default.
- W4315749947 cites W3181493020 @default.
- W4315749947 cites W3202680927 @default.
- W4315749947 cites W3206731330 @default.
- W4315749947 cites W4206271962 @default.
- W4315749947 cites W4225391079 @default.
- W4315749947 doi "https://doi.org/10.1200/jco.22.01345" @default.
- W4315749947 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36634294" @default.
- W4315749947 hasPublicationYear "2023" @default.
- W4315749947 type Work @default.
- W4315749947 citedByCount "22" @default.
- W4315749947 countsByYear W43157499472023 @default.
- W4315749947 crossrefType "journal-article" @default.
- W4315749947 hasAuthorship W4315749947A5002567647 @default.
- W4315749947 hasAuthorship W4315749947A5004483346 @default.
- W4315749947 hasAuthorship W4315749947A5010124873 @default.
- W4315749947 hasAuthorship W4315749947A5015435936 @default.
- W4315749947 hasAuthorship W4315749947A5022345552 @default.
- W4315749947 hasAuthorship W4315749947A5036335426 @default.
- W4315749947 hasAuthorship W4315749947A5039126391 @default.
- W4315749947 hasAuthorship W4315749947A5042568601 @default.
- W4315749947 hasAuthorship W4315749947A5051331130 @default.
- W4315749947 hasAuthorship W4315749947A5054130600 @default.
- W4315749947 hasAuthorship W4315749947A5055422399 @default.
- W4315749947 hasAuthorship W4315749947A5075333926 @default.
- W4315749947 hasAuthorship W4315749947A5080708621 @default.
- W4315749947 hasAuthorship W4315749947A5081973457 @default.
- W4315749947 hasAuthorship W4315749947A5082461467 @default.
- W4315749947 hasAuthorship W4315749947A5084801169 @default.
- W4315749947 hasAuthorship W4315749947A5085519261 @default.
- W4315749947 hasBestOaLocation W43157499471 @default.
- W4315749947 hasConcept C126322002 @default.
- W4315749947 hasConcept C126838900 @default.
- W4315749947 hasConcept C160798450 @default.
- W4315749947 hasConcept C19527891 @default.
- W4315749947 hasConcept C2776256026 @default.
- W4315749947 hasConcept C2777405583 @default.
- W4315749947 hasConcept C2778321237 @default.
- W4315749947 hasConcept C544519230 @default.
- W4315749947 hasConcept C58471807 @default.
- W4315749947 hasConcept C71924100 @default.
- W4315749947 hasConceptScore W4315749947C126322002 @default.
- W4315749947 hasConceptScore W4315749947C126838900 @default.
- W4315749947 hasConceptScore W4315749947C160798450 @default.
- W4315749947 hasConceptScore W4315749947C19527891 @default.
- W4315749947 hasConceptScore W4315749947C2776256026 @default.
- W4315749947 hasConceptScore W4315749947C2777405583 @default.
- W4315749947 hasConceptScore W4315749947C2778321237 @default.
- W4315749947 hasConceptScore W4315749947C544519230 @default.
- W4315749947 hasConceptScore W4315749947C58471807 @default.