Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322488620> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4322488620 abstract "Abstract Multibillion barrels oil in-place carbonate reservoirs have their unique static and dynamic modelling challenges due to the nature of the reservoir with both vertical and lateral heterogeneities. The complex geological processes which took place both during and after the deposition, results in the heterogeneity, which are reflected in the reservoir characterization of these large-scale carbonate reservoirs. Capturing the geological facies variability in the reservoir description is thus one of the critical elements to ensure the model's validity, robustness, and forecasting ability. This case study exemplifies the use of a machine learning approach to tackle this subsurface complexity within a multidisciplinary integrated study to construct a field scale reservoir model for a large carbonate reservoir. The carbonate field has recently acquired additional core data in several newly drilled wells. These cores have been described by sedimentologists to define reservoir depositional facies and lithofacies. This geological description has been used by a machine learning algorithm to train the conventional triple combo logs to recognize the reservoir facies. The training of the facies definitions at the cored wells were also conditioned to the sequence stratigraphic correlation framework of the reservoir. Later these geological facies have been propagated using logs to more than 80 un-cored wells to provide facies predictions within a geological context. The result from the machine learning algorithm gives an excellent replication rate on the cored wells. It is also robust on the un-cored wells throughout the field. This robustness of the facies definitions has been verified using production / injection log survey (PLT / ILT), core CT-Scan and core descriptions. Firstly, for the cored wells, the production / injection zones identified by PLT surveys clearly correspond to the best reservoir facies. Secondly, in the un-cored wells, the best facies predicted by the machine learning algorithm correspond to the production / injection zones interpreted from the production and injection logging surveys (PLT survey) The predicted geological facies in both cored and un-cored wells and seismic inversion trends were used to condition the 3D distribution of the facies in the reservoir model. The use of machine learning for facies prediction has also helped to validate the underlying geological concept of an older good quality reservoir interval in certain areas of the field, which were not adequately sampled from the existing core data. In the future, the machine learning based reservoir models will be used to identify new infill locations where best producing facies are likely to be present." @default.
- W4322488620 created "2023-02-28" @default.
- W4322488620 creator A5004843649 @default.
- W4322488620 creator A5039786849 @default.
- W4322488620 creator A5055438466 @default.
- W4322488620 creator A5055810610 @default.
- W4322488620 creator A5061017882 @default.
- W4322488620 creator A5068151613 @default.
- W4322488620 date "2023-02-28" @default.
- W4322488620 modified "2023-10-01" @default.
- W4322488620 title "Machine Learning for Facies Distribution of Large Carbonate Reservoir Models- A Case Study" @default.
- W4322488620 cites W2264787583 @default.
- W4322488620 cites W2900222662 @default.
- W4322488620 cites W3199006949 @default.
- W4322488620 doi "https://doi.org/10.2523/iptc-22876-ms" @default.
- W4322488620 hasPublicationYear "2023" @default.
- W4322488620 type Work @default.
- W4322488620 citedByCount "1" @default.
- W4322488620 countsByYear W43224886202023 @default.
- W4322488620 crossrefType "proceedings-article" @default.
- W4322488620 hasAuthorship W4322488620A5004843649 @default.
- W4322488620 hasAuthorship W4322488620A5039786849 @default.
- W4322488620 hasAuthorship W4322488620A5055438466 @default.
- W4322488620 hasAuthorship W4322488620A5055810610 @default.
- W4322488620 hasAuthorship W4322488620A5061017882 @default.
- W4322488620 hasAuthorship W4322488620A5068151613 @default.
- W4322488620 hasConcept C109007969 @default.
- W4322488620 hasConcept C113215200 @default.
- W4322488620 hasConcept C114793014 @default.
- W4322488620 hasConcept C126753816 @default.
- W4322488620 hasConcept C127313418 @default.
- W4322488620 hasConcept C14641988 @default.
- W4322488620 hasConcept C146588470 @default.
- W4322488620 hasConcept C151730666 @default.
- W4322488620 hasConcept C17409809 @default.
- W4322488620 hasConcept C191897082 @default.
- W4322488620 hasConcept C192562407 @default.
- W4322488620 hasConcept C19320362 @default.
- W4322488620 hasConcept C2776364302 @default.
- W4322488620 hasConcept C2779343474 @default.
- W4322488620 hasConcept C2780659211 @default.
- W4322488620 hasConcept C5900021 @default.
- W4322488620 hasConcept C6494504 @default.
- W4322488620 hasConcept C78762247 @default.
- W4322488620 hasConceptScore W4322488620C109007969 @default.
- W4322488620 hasConceptScore W4322488620C113215200 @default.
- W4322488620 hasConceptScore W4322488620C114793014 @default.
- W4322488620 hasConceptScore W4322488620C126753816 @default.
- W4322488620 hasConceptScore W4322488620C127313418 @default.
- W4322488620 hasConceptScore W4322488620C14641988 @default.
- W4322488620 hasConceptScore W4322488620C146588470 @default.
- W4322488620 hasConceptScore W4322488620C151730666 @default.
- W4322488620 hasConceptScore W4322488620C17409809 @default.
- W4322488620 hasConceptScore W4322488620C191897082 @default.
- W4322488620 hasConceptScore W4322488620C192562407 @default.
- W4322488620 hasConceptScore W4322488620C19320362 @default.
- W4322488620 hasConceptScore W4322488620C2776364302 @default.
- W4322488620 hasConceptScore W4322488620C2779343474 @default.
- W4322488620 hasConceptScore W4322488620C2780659211 @default.
- W4322488620 hasConceptScore W4322488620C5900021 @default.
- W4322488620 hasConceptScore W4322488620C6494504 @default.
- W4322488620 hasConceptScore W4322488620C78762247 @default.
- W4322488620 hasLocation W43224886201 @default.
- W4322488620 hasOpenAccess W4322488620 @default.
- W4322488620 hasPrimaryLocation W43224886201 @default.
- W4322488620 hasRelatedWork W1911907145 @default.
- W4322488620 hasRelatedWork W1978202421 @default.
- W4322488620 hasRelatedWork W1987191622 @default.
- W4322488620 hasRelatedWork W1995839660 @default.
- W4322488620 hasRelatedWork W2107825821 @default.
- W4322488620 hasRelatedWork W2316513617 @default.
- W4322488620 hasRelatedWork W2361110937 @default.
- W4322488620 hasRelatedWork W3006502352 @default.
- W4322488620 hasRelatedWork W4221098422 @default.
- W4322488620 hasRelatedWork W3089348242 @default.
- W4322488620 isParatext "false" @default.
- W4322488620 isRetracted "false" @default.
- W4322488620 workType "article" @default.