Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323312852> ?p ?o ?g. }
- W4323312852 endingPage "975" @default.
- W4323312852 startingPage "975" @default.
- W4323312852 abstract "We are developing a Virtual Eye for in silico therapies to accelerate research and drug development. In this paper, we present a model for drug distribution in the vitreous body that enables personalized therapy in ophthalmology. The standard treatment for age-related macular degeneration is anti-vascular endothelial growth factor (VEGF) drugs administered by repeated injections. The treatment is risky, unpopular with patients, and some of them are unresponsive with no alternative treatment. Much attention is paid to the efficacy of these drugs, and many efforts are being made to improve them. We are designing a mathematical model and performing long-term three-dimensional Finite Element simulations for drug distribution in the human eye to gain new insights in the underlying processes using computational experiments. The underlying model consists of a time-dependent convection-diffusion equation for the drug coupled with a steady-state Darcy equation describing the flow of aqueous humor through the vitreous medium. The influence of collagen fibers in the vitreous on drug distribution is included by anisotropic diffusion and the gravity via an additional transport term. The resulting coupled model was solved in a decoupled way: first the Darcy equation with mixed finite elements, then the convection-diffusion equation with trilinear Lagrange elements. Krylov subspace methods are used to solve the resulting algebraic system. To cope with the large time steps resulting from the simulations over 30 days (operation time of 1 anti-VEGF injection), we apply the strong A-stable fractional step theta scheme. Using this strategy, we compute a good approximation to the solution that converges quadratically in both time and space. The developed simulations were used for the therapy optimization, for which specific output functionals are evaluated. We show that the effect of gravity on drug distribution is negligible, that the optimal pair of injection angles is (50∘,50∘), that larger angles can result in 38% less drug at the macula, and that in the best case only 40% of the drug reaches the macula while the rest escapes, e.g., through the retina, that by using heavier drug molecules, more of the drug concentration reaches the macula in an average of 30 days. As a refined therapy, we have found that for longer-acting drugs, the injection should be made in the center of the vitreous, and for more intensive initial treatment, the drug should be injected even closer to the macula. In this way, we can perform accurate and efficient treatment testing, calculate the optimal injection position, perform drug comparison, and quantify the effectiveness of the therapy using the developed functionals. We describe the first steps towards virtual exploration and improvement of therapy for retinal diseases such as age-related macular degeneration." @default.
- W4323312852 created "2023-03-07" @default.
- W4323312852 creator A5016376676 @default.
- W4323312852 creator A5038756249 @default.
- W4323312852 creator A5059020199 @default.
- W4323312852 date "2023-03-03" @default.
- W4323312852 modified "2023-09-26" @default.
- W4323312852 title "Models and Algorithms for the Refinement of Therapeutic Approaches for Retinal Diseases" @default.
- W4323312852 cites W1481978003 @default.
- W4323312852 cites W1803161582 @default.
- W4323312852 cites W1851059930 @default.
- W4323312852 cites W1980772932 @default.
- W4323312852 cites W1986346324 @default.
- W4323312852 cites W1995953782 @default.
- W4323312852 cites W2000099545 @default.
- W4323312852 cites W2008892506 @default.
- W4323312852 cites W2030409545 @default.
- W4323312852 cites W2038451782 @default.
- W4323312852 cites W2047301512 @default.
- W4323312852 cites W2102295719 @default.
- W4323312852 cites W2103411248 @default.
- W4323312852 cites W2108002194 @default.
- W4323312852 cites W2140153041 @default.
- W4323312852 cites W2141870784 @default.
- W4323312852 cites W2153192092 @default.
- W4323312852 cites W2155434128 @default.
- W4323312852 cites W2166686643 @default.
- W4323312852 cites W2171081956 @default.
- W4323312852 cites W2214193457 @default.
- W4323312852 cites W2289200040 @default.
- W4323312852 cites W2316564661 @default.
- W4323312852 cites W2539484214 @default.
- W4323312852 cites W2560445928 @default.
- W4323312852 cites W2583079321 @default.
- W4323312852 cites W2596095643 @default.
- W4323312852 cites W2617421506 @default.
- W4323312852 cites W2747725012 @default.
- W4323312852 cites W2750410498 @default.
- W4323312852 cites W2886281300 @default.
- W4323312852 cites W2955043754 @default.
- W4323312852 cites W2978418845 @default.
- W4323312852 cites W3003605627 @default.
- W4323312852 cites W3083924924 @default.
- W4323312852 cites W3104598671 @default.
- W4323312852 cites W3128469970 @default.
- W4323312852 cites W3154420617 @default.
- W4323312852 cites W3159796046 @default.
- W4323312852 cites W3177310574 @default.
- W4323312852 cites W4206969546 @default.
- W4323312852 cites W4210409689 @default.
- W4323312852 cites W4221012768 @default.
- W4323312852 cites W4224218448 @default.
- W4323312852 cites W4252686797 @default.
- W4323312852 cites W4280586022 @default.
- W4323312852 cites W4293585106 @default.
- W4323312852 cites W601797399 @default.
- W4323312852 cites W2889476633 @default.
- W4323312852 doi "https://doi.org/10.3390/diagnostics13050975" @default.
- W4323312852 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36900119" @default.
- W4323312852 hasPublicationYear "2023" @default.
- W4323312852 type Work @default.
- W4323312852 citedByCount "0" @default.
- W4323312852 crossrefType "journal-article" @default.
- W4323312852 hasAuthorship W4323312852A5016376676 @default.
- W4323312852 hasAuthorship W4323312852A5038756249 @default.
- W4323312852 hasAuthorship W4323312852A5059020199 @default.
- W4323312852 hasBestOaLocation W43233128521 @default.
- W4323312852 hasConcept C110121322 @default.
- W4323312852 hasConcept C11413529 @default.
- W4323312852 hasConcept C121332964 @default.
- W4323312852 hasConcept C134306372 @default.
- W4323312852 hasConcept C135628077 @default.
- W4323312852 hasConcept C147060835 @default.
- W4323312852 hasConcept C159694833 @default.
- W4323312852 hasConcept C28826006 @default.
- W4323312852 hasConcept C33923547 @default.
- W4323312852 hasConcept C41008148 @default.
- W4323312852 hasConcept C69357855 @default.
- W4323312852 hasConcept C97355855 @default.
- W4323312852 hasConceptScore W4323312852C110121322 @default.
- W4323312852 hasConceptScore W4323312852C11413529 @default.
- W4323312852 hasConceptScore W4323312852C121332964 @default.
- W4323312852 hasConceptScore W4323312852C134306372 @default.
- W4323312852 hasConceptScore W4323312852C135628077 @default.
- W4323312852 hasConceptScore W4323312852C147060835 @default.
- W4323312852 hasConceptScore W4323312852C159694833 @default.
- W4323312852 hasConceptScore W4323312852C28826006 @default.
- W4323312852 hasConceptScore W4323312852C33923547 @default.
- W4323312852 hasConceptScore W4323312852C41008148 @default.
- W4323312852 hasConceptScore W4323312852C69357855 @default.
- W4323312852 hasConceptScore W4323312852C97355855 @default.
- W4323312852 hasFunder F4320324316 @default.
- W4323312852 hasIssue "5" @default.
- W4323312852 hasLocation W43233128521 @default.
- W4323312852 hasLocation W43233128522 @default.
- W4323312852 hasLocation W43233128523 @default.
- W4323312852 hasOpenAccess W4323312852 @default.
- W4323312852 hasPrimaryLocation W43233128521 @default.