Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323348889> ?p ?o ?g. }
- W4323348889 endingPage "4915" @default.
- W4323348889 startingPage "4899" @default.
- W4323348889 abstract "Deep learning based unsupervised registration utilizes the intensity information to align images. To avoid the influence of intensity variation and improve the registration accuracy, unsupervised and weakly-supervised registration are combined, namely, dually-supervised registration. However, the estimated dense deformation fields (DDFs) will focus on the edges among adjacent tissues when the segmentation labels are directly used to drive the registration progress, which will decrease the plausibility of brain MRI registration.In order to increase the accuracy of registration and ensure the plausibility of registration at the same time, we combine the local-signed-distance fields (LSDFs) and intensity images to dually supervise the registration progress. The proposed method not only uses the intensity and segmentation information but also uses the voxelwise geometric distance information to the edges. Hence, the accurate voxelwise correspondence relationships are guaranteed both inside and outside the edges.The proposed dually-supervised registration method mainly includes three enhancement strategies. Firstly, we leverage the segmentation labels to construct their LSDFs to provide more geometrical information for guiding the registration process. Secondly, to calculate LSDFs, we construct an LSDF-Net, which is composed of 3D dilation layers and erosion layers. Finally, we design the dually-supervised registration network (VMLSDF ) by combining the unsupervised VoxelMorph (VM) registration network and the weakly-supervised LSDF-Net, to utilize intensity and LSDF information, respectively.In this paper, experiments were then carried out on four public brain image datasets: LPBA40, HBN, OASIS1, and OASIS3. The experimental results show that the Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD) of VMLSDF are higher than those of the original unsupervised VM and the dually-supervised registration network (VMseg ) using intensity images and segmentation labels. At the same time, the percentage of negative Jacobian determinant (NJD) of VMLSDF is lower than VMseg . Our code is freely available at https://github.com/1209684549/LSDF.The experimental results show that LSDFs can improve the registration accuracy compared with VM and VMseg , and enhance the plausibility of the DDFs compared with VMseg ." @default.
- W4323348889 created "2023-03-08" @default.
- W4323348889 creator A5000865830 @default.
- W4323348889 creator A5000937401 @default.
- W4323348889 creator A5012558857 @default.
- W4323348889 creator A5085795040 @default.
- W4323348889 date "2023-03-19" @default.
- W4323348889 modified "2023-09-27" @default.
- W4323348889 title "Deep learning based brain MRI registration driven by local‐signed‐distance fields of segmentation maps" @default.
- W4323348889 cites W1987869189 @default.
- W4323348889 cites W2083099567 @default.
- W4323348889 cites W2136145485 @default.
- W4323348889 cites W2144595616 @default.
- W4323348889 cites W2150534249 @default.
- W4323348889 cites W2160754664 @default.
- W4323348889 cites W2577764706 @default.
- W4323348889 cites W2588241557 @default.
- W4323348889 cites W2604920239 @default.
- W4323348889 cites W2750752294 @default.
- W4323348889 cites W2754938078 @default.
- W4323348889 cites W2780601052 @default.
- W4323348889 cites W2795659077 @default.
- W4323348889 cites W2816936748 @default.
- W4323348889 cites W2889905929 @default.
- W4323348889 cites W2898403737 @default.
- W4323348889 cites W2922479016 @default.
- W4323348889 cites W2962914239 @default.
- W4323348889 cites W2963196212 @default.
- W4323348889 cites W2977883299 @default.
- W4323348889 cites W2979431346 @default.
- W4323348889 cites W2980029727 @default.
- W4323348889 cites W2995808388 @default.
- W4323348889 cites W3004271373 @default.
- W4323348889 cites W3045889720 @default.
- W4323348889 cites W3089886985 @default.
- W4323348889 cites W3092446792 @default.
- W4323348889 cites W3098269293 @default.
- W4323348889 cites W3098315580 @default.
- W4323348889 cites W3099561884 @default.
- W4323348889 cites W3104164805 @default.
- W4323348889 cites W3106537870 @default.
- W4323348889 cites W3111777727 @default.
- W4323348889 cites W3136762441 @default.
- W4323348889 cites W3138516171 @default.
- W4323348889 cites W3176521625 @default.
- W4323348889 cites W3186742534 @default.
- W4323348889 cites W4226421488 @default.
- W4323348889 cites W4226497331 @default.
- W4323348889 cites W4296057273 @default.
- W4323348889 cites W764651262 @default.
- W4323348889 doi "https://doi.org/10.1002/mp.16291" @default.
- W4323348889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36880373" @default.
- W4323348889 hasPublicationYear "2023" @default.
- W4323348889 type Work @default.
- W4323348889 citedByCount "0" @default.
- W4323348889 crossrefType "journal-article" @default.
- W4323348889 hasAuthorship W4323348889A5000865830 @default.
- W4323348889 hasAuthorship W4323348889A5000937401 @default.
- W4323348889 hasAuthorship W4323348889A5012558857 @default.
- W4323348889 hasAuthorship W4323348889A5085795040 @default.
- W4323348889 hasConcept C103278499 @default.
- W4323348889 hasConcept C115961682 @default.
- W4323348889 hasConcept C124504099 @default.
- W4323348889 hasConcept C141898687 @default.
- W4323348889 hasConcept C152139883 @default.
- W4323348889 hasConcept C153083717 @default.
- W4323348889 hasConcept C153180895 @default.
- W4323348889 hasConcept C154945302 @default.
- W4323348889 hasConcept C163892561 @default.
- W4323348889 hasConcept C166704113 @default.
- W4323348889 hasConcept C31972630 @default.
- W4323348889 hasConcept C41008148 @default.
- W4323348889 hasConcept C89600930 @default.
- W4323348889 hasConceptScore W4323348889C103278499 @default.
- W4323348889 hasConceptScore W4323348889C115961682 @default.
- W4323348889 hasConceptScore W4323348889C124504099 @default.
- W4323348889 hasConceptScore W4323348889C141898687 @default.
- W4323348889 hasConceptScore W4323348889C152139883 @default.
- W4323348889 hasConceptScore W4323348889C153083717 @default.
- W4323348889 hasConceptScore W4323348889C153180895 @default.
- W4323348889 hasConceptScore W4323348889C154945302 @default.
- W4323348889 hasConceptScore W4323348889C163892561 @default.
- W4323348889 hasConceptScore W4323348889C166704113 @default.
- W4323348889 hasConceptScore W4323348889C31972630 @default.
- W4323348889 hasConceptScore W4323348889C41008148 @default.
- W4323348889 hasConceptScore W4323348889C89600930 @default.
- W4323348889 hasFunder F4320321001 @default.
- W4323348889 hasIssue "8" @default.
- W4323348889 hasLocation W43233488891 @default.
- W4323348889 hasLocation W43233488892 @default.
- W4323348889 hasOpenAccess W4323348889 @default.
- W4323348889 hasPrimaryLocation W43233488891 @default.
- W4323348889 hasRelatedWork W1121315442 @default.
- W4323348889 hasRelatedWork W1481936136 @default.
- W4323348889 hasRelatedWork W1669643531 @default.
- W4323348889 hasRelatedWork W2005437358 @default.
- W4323348889 hasRelatedWork W2008656436 @default.
- W4323348889 hasRelatedWork W2134924024 @default.