Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362472801> ?p ?o ?g. }
- W4362472801 abstract "In this paper, an attempt is made to construct a Friedmann-Lemaitre-Robertson-Walker model in $f(R,T)$ gravity with a perfect fluid that yields acceleration at late times. We take $f(R,T)$ as $R$ + $8pi mu T$. As in the $Lambda$CDM model, we take the matter to consist of two components, viz., $Omega_m$ and $Omega_{mu}$ such that $Omega_m$ + $Omega_{mu}$=1. The parameter $Omega_m$ is the matter density (baryons + dark matter), and $Omega_{mu}$ is the density associated with the Ricci scalar $R$ and the trace $T$ of the energy momentum tensor, which we shall call dominant matter. We find that at present $Omega_{mu}$ is dominant over $Omega_m$, and that the two are in the ratio 3:1 to 3:2 according to the three data sets: (i) 77 Hubble OHD data set (ii) 580 SNIa supernova distance modulus data set and (iii) 66 pantheon SNIa data which include high red shift data in the range $0leq zleq 2.36$. We have also calculated the pressures and densities associated with the two matter densities, viz., $p_{mu}$, $rho_{mu}$, $p_m$ and $rho_m$, respectively. It is also found that at present, $rho_{mu}$ is greater than $rho_m$. The negative dominant matter pressure $p_{mu}$ creates acceleration in the universe. Our deceleration and snap parameters show a change from negative to positive, whereas the jerk parameter is always positive. This means that the universe is at present accelerating and in the past it was decelerating. State finder diagnostics indicate that our model is at present a dark energy quintessence model. The various other physical and geometric properties of the model are also discussed." @default.
- W4362472801 created "2023-04-05" @default.
- W4362472801 creator A5021728811 @default.
- W4362472801 creator A5063472778 @default.
- W4362472801 creator A5064177383 @default.
- W4362472801 date "2023-05-09" @default.
- W4362472801 modified "2023-10-03" @default.
- W4362472801 title "Reconstruction of an observationally constrained f(R,T) gravity model" @default.
- W4362472801 cites W1653780923 @default.
- W4362472801 cites W1801676272 @default.
- W4362472801 cites W1853767801 @default.
- W4362472801 cites W1958232190 @default.
- W4362472801 cites W1970820225 @default.
- W4362472801 cites W1989589910 @default.
- W4362472801 cites W1997756830 @default.
- W4362472801 cites W2003401122 @default.
- W4362472801 cites W2004493956 @default.
- W4362472801 cites W2011426435 @default.
- W4362472801 cites W2012627408 @default.
- W4362472801 cites W2024945444 @default.
- W4362472801 cites W2026398734 @default.
- W4362472801 cites W2037220809 @default.
- W4362472801 cites W2042504765 @default.
- W4362472801 cites W2045719640 @default.
- W4362472801 cites W2048446165 @default.
- W4362472801 cites W2048733262 @default.
- W4362472801 cites W2056173066 @default.
- W4362472801 cites W2056583201 @default.
- W4362472801 cites W2057645607 @default.
- W4362472801 cites W2058132665 @default.
- W4362472801 cites W2064230241 @default.
- W4362472801 cites W2065743072 @default.
- W4362472801 cites W2066469075 @default.
- W4362472801 cites W2068072855 @default.
- W4362472801 cites W2072344789 @default.
- W4362472801 cites W2073603601 @default.
- W4362472801 cites W2073832139 @default.
- W4362472801 cites W2102025998 @default.
- W4362472801 cites W2102716046 @default.
- W4362472801 cites W2106814493 @default.
- W4362472801 cites W2116312019 @default.
- W4362472801 cites W2118265220 @default.
- W4362472801 cites W2127174462 @default.
- W4362472801 cites W2129362056 @default.
- W4362472801 cites W2131279590 @default.
- W4362472801 cites W2135920379 @default.
- W4362472801 cites W2144359917 @default.
- W4362472801 cites W2147875900 @default.
- W4362472801 cites W2153811626 @default.
- W4362472801 cites W2156856858 @default.
- W4362472801 cites W2157494422 @default.
- W4362472801 cites W2166474522 @default.
- W4362472801 cites W2501864044 @default.
- W4362472801 cites W2582831932 @default.
- W4362472801 cites W2587754488 @default.
- W4362472801 cites W2614641242 @default.
- W4362472801 cites W2763117186 @default.
- W4362472801 cites W2883417082 @default.
- W4362472801 cites W2900307608 @default.
- W4362472801 cites W2926950086 @default.
- W4362472801 cites W2952150967 @default.
- W4362472801 cites W2953898931 @default.
- W4362472801 cites W2969019030 @default.
- W4362472801 cites W3029867281 @default.
- W4362472801 cites W3037504478 @default.
- W4362472801 cites W3037892883 @default.
- W4362472801 cites W3060971154 @default.
- W4362472801 cites W3087823652 @default.
- W4362472801 cites W3098728794 @default.
- W4362472801 cites W3098780516 @default.
- W4362472801 cites W3098850972 @default.
- W4362472801 cites W3098880213 @default.
- W4362472801 cites W3099029965 @default.
- W4362472801 cites W3101692842 @default.
- W4362472801 cites W3102228028 @default.
- W4362472801 cites W3102687315 @default.
- W4362472801 cites W3103593852 @default.
- W4362472801 cites W3105647117 @default.
- W4362472801 cites W3105897092 @default.
- W4362472801 cites W3121331157 @default.
- W4362472801 cites W3123971863 @default.
- W4362472801 cites W3171663739 @default.
- W4362472801 cites W4205478109 @default.
- W4362472801 cites W4213360538 @default.
- W4362472801 cites W4255573459 @default.
- W4362472801 cites W4282961335 @default.
- W4362472801 cites W4292230281 @default.
- W4362472801 cites W4306850861 @default.
- W4362472801 cites W4324367387 @default.
- W4362472801 doi "https://doi.org/10.1142/s0219887823501694" @default.
- W4362472801 hasPublicationYear "2023" @default.
- W4362472801 type Work @default.
- W4362472801 citedByCount "1" @default.
- W4362472801 crossrefType "journal-article" @default.
- W4362472801 hasAuthorship W4362472801A5021728811 @default.
- W4362472801 hasAuthorship W4362472801A5063472778 @default.
- W4362472801 hasAuthorship W4362472801A5064177383 @default.
- W4362472801 hasBestOaLocation W43624728012 @default.
- W4362472801 hasConcept C103874350 @default.
- W4362472801 hasConcept C121332964 @default.