Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366456871> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4366456871 abstract "In time-series forecasting, future target values may be affected by both intrinsic and extrinsic effects. When forecasting blood glucose, for example, intrinsic effects can be inferred from the history of the target signal alone (textit{i.e.} blood glucose), but accurately modeling the impact of extrinsic effects requires auxiliary signals, like the amount of carbohydrates ingested. Standard forecasting techniques often assume that extrinsic and intrinsic effects vary at similar rates. However, when auxiliary signals are generated at a much lower frequency than the target variable (e.g., blood glucose measurements are made every 5 minutes, while meals occur once every few hours), even well-known extrinsic effects (e.g., carbohydrates increase blood glucose) may prove difficult to learn. To better utilize these textit{sparse but informative variables} (SIVs), we introduce a novel encoder/decoder forecasting approach that accurately learns the per-timepoint effect of the SIV, by (i) isolating it from intrinsic effects and (ii) restricting its learned effect based on domain knowledge. On a simulated dataset pertaining to the task of blood glucose forecasting, when the SIV is accurately recorded our approach outperforms baseline approaches in terms of rMSE (13.07 [95% CI: 11.77,14.16] vs. 14.14 [12.69,15.27]). In the presence of a corrupted SIV, the proposed approach can still result in lower error compared to the baseline but the advantage is reduced as noise increases. By isolating their effects and incorporating domain knowledge, our approach makes it possible to better utilize SIVs in forecasting." @default.
- W4366456871 created "2023-04-22" @default.
- W4366456871 creator A5034080867 @default.
- W4366456871 creator A5055037967 @default.
- W4366456871 creator A5080941650 @default.
- W4366456871 date "2023-04-17" @default.
- W4366456871 modified "2023-10-18" @default.
- W4366456871 title "Forecasting with Sparse but Informative Variables: A Case Study in Predicting Blood Glucose" @default.
- W4366456871 doi "https://doi.org/10.48550/arxiv.2304.08593" @default.
- W4366456871 hasPublicationYear "2023" @default.
- W4366456871 type Work @default.
- W4366456871 citedByCount "0" @default.
- W4366456871 crossrefType "posted-content" @default.
- W4366456871 hasAuthorship W4366456871A5034080867 @default.
- W4366456871 hasAuthorship W4366456871A5055037967 @default.
- W4366456871 hasAuthorship W4366456871A5080941650 @default.
- W4366456871 hasBestOaLocation W43664568711 @default.
- W4366456871 hasConcept C105795698 @default.
- W4366456871 hasConcept C11413529 @default.
- W4366456871 hasConcept C115961682 @default.
- W4366456871 hasConcept C12725497 @default.
- W4366456871 hasConcept C127413603 @default.
- W4366456871 hasConcept C134306372 @default.
- W4366456871 hasConcept C153180895 @default.
- W4366456871 hasConcept C154945302 @default.
- W4366456871 hasConcept C201995342 @default.
- W4366456871 hasConcept C2780451532 @default.
- W4366456871 hasConcept C33923547 @default.
- W4366456871 hasConcept C36503486 @default.
- W4366456871 hasConcept C41008148 @default.
- W4366456871 hasConcept C505870484 @default.
- W4366456871 hasConcept C86803240 @default.
- W4366456871 hasConcept C99498987 @default.
- W4366456871 hasConceptScore W4366456871C105795698 @default.
- W4366456871 hasConceptScore W4366456871C11413529 @default.
- W4366456871 hasConceptScore W4366456871C115961682 @default.
- W4366456871 hasConceptScore W4366456871C12725497 @default.
- W4366456871 hasConceptScore W4366456871C127413603 @default.
- W4366456871 hasConceptScore W4366456871C134306372 @default.
- W4366456871 hasConceptScore W4366456871C153180895 @default.
- W4366456871 hasConceptScore W4366456871C154945302 @default.
- W4366456871 hasConceptScore W4366456871C201995342 @default.
- W4366456871 hasConceptScore W4366456871C2780451532 @default.
- W4366456871 hasConceptScore W4366456871C33923547 @default.
- W4366456871 hasConceptScore W4366456871C36503486 @default.
- W4366456871 hasConceptScore W4366456871C41008148 @default.
- W4366456871 hasConceptScore W4366456871C505870484 @default.
- W4366456871 hasConceptScore W4366456871C86803240 @default.
- W4366456871 hasConceptScore W4366456871C99498987 @default.
- W4366456871 hasLocation W43664568711 @default.
- W4366456871 hasOpenAccess W4366456871 @default.
- W4366456871 hasPrimaryLocation W43664568711 @default.
- W4366456871 hasRelatedWork W1607472309 @default.
- W4366456871 hasRelatedWork W2033914206 @default.
- W4366456871 hasRelatedWork W2081647779 @default.
- W4366456871 hasRelatedWork W2146076056 @default.
- W4366456871 hasRelatedWork W2949588086 @default.
- W4366456871 hasRelatedWork W3107474891 @default.
- W4366456871 hasRelatedWork W4237750775 @default.
- W4366456871 hasRelatedWork W4294661698 @default.
- W4366456871 hasRelatedWork W4319453497 @default.
- W4366456871 hasRelatedWork W4364383453 @default.
- W4366456871 isParatext "false" @default.
- W4366456871 isRetracted "false" @default.
- W4366456871 workType "article" @default.