Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367011878> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4367011878 endingPage "497" @default.
- W4367011878 startingPage "485" @default.
- W4367011878 abstract "Covid (COVID-19) is an irresistible illness brought about by the SARS-CoV-2 virus. Initially, it was first found in China and began to spread quickly all around the world causing numerous deaths and defeats in practically all fields. Computed tomography (CT) images are popularly being used in the field of computer vision to aid the medical experts to diagnose various diseases. This work aims to pre-process raw CT images which contain noises and disturbances which need to be filtered and enhanced for various medical applications. In this paper, we propose pre-processing steps (restoration and enhancing) of its variants utilizing CT scan images. Lung computerized tomography (CT) images can be viably utilized for early identification of COVID-19 patients. These CT images are handled utilizing computer aided diagnosis (CAD) procedures by the use of reasonable calculations. The first and fundamental stage for any sort of image is to restore and improve them. In this paper, the restoration algorithms used are a combination of two traditional algorithms (bilateral + anisotropic) thus naming it Improved Anisotropic Diffusion Bilateral Filter (2D IADBF). The efficiency of the proposed techniques is exhibited through comparison between traditional algorithms like 2D median filter, 2D log filter, and 2D frequency domain wavelet filter for restoration. The enhancement algorithm utilized is 2D edge preservation efficient histogram improvement (2D EPEHI) algorithm which is ensemble of Edge preservation and histogram processing which focuses on methods like contrast limited adaptive histogram equalization (CLAHE), 2D adaptive mean adjustment, and image coherence improvement, and the results are efficient." @default.
- W4367011878 created "2023-04-27" @default.
- W4367011878 creator A5031250467 @default.
- W4367011878 creator A5034314305 @default.
- W4367011878 date "2023-01-01" @default.
- W4367011878 modified "2023-09-25" @default.
- W4367011878 title "Restoration and Enhancement of COVID-19 Variants Using CT Images" @default.
- W4367011878 cites W2939975982 @default.
- W4367011878 cites W2945494248 @default.
- W4367011878 cites W2965401993 @default.
- W4367011878 cites W2981384232 @default.
- W4367011878 cites W2983132969 @default.
- W4367011878 cites W2990280407 @default.
- W4367011878 cites W3012808206 @default.
- W4367011878 cites W3012817089 @default.
- W4367011878 cites W3012860910 @default.
- W4367011878 cites W3015141576 @default.
- W4367011878 cites W3015390407 @default.
- W4367011878 cites W3016653598 @default.
- W4367011878 cites W3023617420 @default.
- W4367011878 cites W3023618360 @default.
- W4367011878 cites W3036970475 @default.
- W4367011878 cites W3088122790 @default.
- W4367011878 cites W3165373734 @default.
- W4367011878 cites W3171314425 @default.
- W4367011878 doi "https://doi.org/10.1007/978-981-19-5191-6_39" @default.
- W4367011878 hasPublicationYear "2023" @default.
- W4367011878 type Work @default.
- W4367011878 citedByCount "0" @default.
- W4367011878 crossrefType "book-chapter" @default.
- W4367011878 hasAuthorship W4367011878A5031250467 @default.
- W4367011878 hasAuthorship W4367011878A5034314305 @default.
- W4367011878 hasConcept C106131492 @default.
- W4367011878 hasConcept C115961682 @default.
- W4367011878 hasConcept C136943445 @default.
- W4367011878 hasConcept C142724271 @default.
- W4367011878 hasConcept C153180895 @default.
- W4367011878 hasConcept C154945302 @default.
- W4367011878 hasConcept C2779134260 @default.
- W4367011878 hasConcept C3008058167 @default.
- W4367011878 hasConcept C30387639 @default.
- W4367011878 hasConcept C31972630 @default.
- W4367011878 hasConcept C41008148 @default.
- W4367011878 hasConcept C524204448 @default.
- W4367011878 hasConcept C53533937 @default.
- W4367011878 hasConcept C71924100 @default.
- W4367011878 hasConceptScore W4367011878C106131492 @default.
- W4367011878 hasConceptScore W4367011878C115961682 @default.
- W4367011878 hasConceptScore W4367011878C136943445 @default.
- W4367011878 hasConceptScore W4367011878C142724271 @default.
- W4367011878 hasConceptScore W4367011878C153180895 @default.
- W4367011878 hasConceptScore W4367011878C154945302 @default.
- W4367011878 hasConceptScore W4367011878C2779134260 @default.
- W4367011878 hasConceptScore W4367011878C3008058167 @default.
- W4367011878 hasConceptScore W4367011878C30387639 @default.
- W4367011878 hasConceptScore W4367011878C31972630 @default.
- W4367011878 hasConceptScore W4367011878C41008148 @default.
- W4367011878 hasConceptScore W4367011878C524204448 @default.
- W4367011878 hasConceptScore W4367011878C53533937 @default.
- W4367011878 hasConceptScore W4367011878C71924100 @default.
- W4367011878 hasLocation W43670118781 @default.
- W4367011878 hasOpenAccess W4367011878 @default.
- W4367011878 hasPrimaryLocation W43670118781 @default.
- W4367011878 hasRelatedWork W1983610137 @default.
- W4367011878 hasRelatedWork W1986586280 @default.
- W4367011878 hasRelatedWork W2035413902 @default.
- W4367011878 hasRelatedWork W2063599644 @default.
- W4367011878 hasRelatedWork W2124910865 @default.
- W4367011878 hasRelatedWork W2131911629 @default.
- W4367011878 hasRelatedWork W2136748848 @default.
- W4367011878 hasRelatedWork W2282972943 @default.
- W4367011878 hasRelatedWork W2334283756 @default.
- W4367011878 hasRelatedWork W3005556686 @default.
- W4367011878 isParatext "false" @default.
- W4367011878 isRetracted "false" @default.
- W4367011878 workType "book-chapter" @default.