Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367052536> ?p ?o ?g. }
- W4367052536 endingPage "290" @default.
- W4367052536 startingPage "290" @default.
- W4367052536 abstract "Soil organic matter (SOM) is a critical indicator of soil nutrient levels, and the precise mapping of its spatial distribution through remote sensing is essential for soil regulation, precise fertilization, and scientific management and protection. This information can offer decision support to agricultural management departments and various agricultural producers. In this paper, two new soil indices, NLIrededge2 and GDVIrededge2, were proposed based on the sensitive spectral response characteristics of SOM in Northeast China. Nine parameters suitable for SOM mapping and modeling were determined using the competitive adaptive reweighted sampling (CARS) method, combined with spectrum reflectance, mathematical transformations of reflectance, vegetation indices, and so on. Then, utilizing unmanned aerial vehicle (UAV)-based multispectral images with centimeter-level resolution, a random forest machine learning algorithm was used to construct the inversion model of SOM and mapping SOM in the study area. The results showed that the random forest algorithm performed best for estimating SOM (R2 = 0.91, RMSE = 0.95, MBE = 0.49, and RPIQ = 3.25) when compared with other machine learning algorithms such as support vector regression (SVR), elastic net, Bayesian ridge, and linear regression. The findings indicated a negative correlation between SOM content and altitude. The study concluded that the SOM modeling and mapping results could meet the needs of farmers to obtain basic information and provide a reference for UAVs to monitor SOM." @default.
- W4367052536 created "2023-04-27" @default.
- W4367052536 creator A5026697566 @default.
- W4367052536 creator A5037774305 @default.
- W4367052536 creator A5043223473 @default.
- W4367052536 creator A5054277630 @default.
- W4367052536 creator A5081357598 @default.
- W4367052536 creator A5083276616 @default.
- W4367052536 creator A5088752886 @default.
- W4367052536 date "2023-04-26" @default.
- W4367052536 modified "2023-09-30" @default.
- W4367052536 title "High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms" @default.
- W4367052536 cites W1968590658 @default.
- W4367052536 cites W1976317923 @default.
- W4367052536 cites W1978223575 @default.
- W4367052536 cites W1986072339 @default.
- W4367052536 cites W2000102737 @default.
- W4367052536 cites W2003625635 @default.
- W4367052536 cites W2007231592 @default.
- W4367052536 cites W2039409148 @default.
- W4367052536 cites W2040611841 @default.
- W4367052536 cites W2042055101 @default.
- W4367052536 cites W2054603652 @default.
- W4367052536 cites W2055389508 @default.
- W4367052536 cites W2058209643 @default.
- W4367052536 cites W2069209512 @default.
- W4367052536 cites W2075818603 @default.
- W4367052536 cites W2109885539 @default.
- W4367052536 cites W2109909749 @default.
- W4367052536 cites W2144405000 @default.
- W4367052536 cites W2159961845 @default.
- W4367052536 cites W2160475685 @default.
- W4367052536 cites W2162305350 @default.
- W4367052536 cites W2200752703 @default.
- W4367052536 cites W2399675776 @default.
- W4367052536 cites W2411263686 @default.
- W4367052536 cites W2509917403 @default.
- W4367052536 cites W2555930296 @default.
- W4367052536 cites W2582794771 @default.
- W4367052536 cites W2724796018 @default.
- W4367052536 cites W2756972412 @default.
- W4367052536 cites W2789904487 @default.
- W4367052536 cites W2805916112 @default.
- W4367052536 cites W2810045919 @default.
- W4367052536 cites W2888238379 @default.
- W4367052536 cites W2893324711 @default.
- W4367052536 cites W2905650967 @default.
- W4367052536 cites W2911470580 @default.
- W4367052536 cites W2921202857 @default.
- W4367052536 cites W2970458293 @default.
- W4367052536 cites W2973227692 @default.
- W4367052536 cites W3003765781 @default.
- W4367052536 cites W3015100173 @default.
- W4367052536 cites W3095660303 @default.
- W4367052536 cites W3106853424 @default.
- W4367052536 cites W3115734772 @default.
- W4367052536 cites W3122660998 @default.
- W4367052536 cites W3123593598 @default.
- W4367052536 cites W3153557861 @default.
- W4367052536 cites W3184541552 @default.
- W4367052536 cites W3186417899 @default.
- W4367052536 cites W3192238650 @default.
- W4367052536 cites W4200030192 @default.
- W4367052536 cites W4200595788 @default.
- W4367052536 cites W4214672600 @default.
- W4367052536 cites W4223412452 @default.
- W4367052536 cites W4281566243 @default.
- W4367052536 cites W4285091009 @default.
- W4367052536 cites W4288081257 @default.
- W4367052536 cites W4313135875 @default.
- W4367052536 cites W4323315622 @default.
- W4367052536 doi "https://doi.org/10.3390/drones7050290" @default.
- W4367052536 hasPublicationYear "2023" @default.
- W4367052536 type Work @default.
- W4367052536 citedByCount "1" @default.
- W4367052536 countsByYear W43670525362023 @default.
- W4367052536 crossrefType "journal-article" @default.
- W4367052536 hasAuthorship W4367052536A5026697566 @default.
- W4367052536 hasAuthorship W4367052536A5037774305 @default.
- W4367052536 hasAuthorship W4367052536A5043223473 @default.
- W4367052536 hasAuthorship W4367052536A5054277630 @default.
- W4367052536 hasAuthorship W4367052536A5081357598 @default.
- W4367052536 hasAuthorship W4367052536A5083276616 @default.
- W4367052536 hasAuthorship W4367052536A5088752886 @default.
- W4367052536 hasBestOaLocation W43670525361 @default.
- W4367052536 hasConcept C105795698 @default.
- W4367052536 hasConcept C11413529 @default.
- W4367052536 hasConcept C118518473 @default.
- W4367052536 hasConcept C120217122 @default.
- W4367052536 hasConcept C12267149 @default.
- W4367052536 hasConcept C139945424 @default.
- W4367052536 hasConcept C154945302 @default.
- W4367052536 hasConcept C166957645 @default.
- W4367052536 hasConcept C169258074 @default.
- W4367052536 hasConcept C173163844 @default.
- W4367052536 hasConcept C205649164 @default.
- W4367052536 hasConcept C33923547 @default.
- W4367052536 hasConcept C39432304 @default.